Point Clouds Matching Based on Discrete Optimal Transport

Matching is an important prerequisite for point clouds registration, which is to establish a reliable correspondence between two point clouds. This paper aims to improve recent theoretical and algorithmic results on discrete optimal transport (DOT), since it lacks robustness for the point clouds mat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 03., Seite 5650-5662
1. Verfasser: Ma, Litao (VerfasserIn)
Weitere Verfasser: Bian, Wei, Xue, Xiaoping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM378480855
003 DE-627
005 20241010232628.0
007 cr uuu---uuuuu
008 241004s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3459594  |2 doi 
028 5 2 |a pubmed24n1563.xml 
035 |a (DE-627)NLM378480855 
035 |a (NLM)39361467 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Litao  |e verfasserin  |4 aut 
245 1 0 |a Point Clouds Matching Based on Discrete Optimal Transport 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Matching is an important prerequisite for point clouds registration, which is to establish a reliable correspondence between two point clouds. This paper aims to improve recent theoretical and algorithmic results on discrete optimal transport (DOT), since it lacks robustness for the point clouds matching problems with large-scale affine or even nonlinear transformation. We first consider the importance of the used prior probability for accurate matching and give some theoretical analysis. Then, to solve the point clouds matching problems with complex deformation and noise, we propose an improved DOT model, which introduces an orthogonal matrix and a diagonal matrix into the classical DOT model. To enhance its capability of dealing with cases with outliers, we further bring forward a relaxed and regularized DOT model. Meantime, we propose two algorithms to solve the brought forward two models. Finally, extensive experiments on some real datasets are designed in the presence of reflection, large-scale rotation, stretch, noise, and outliers. Some state-of-the-art methods, including CPD, APM, RANSAC, TPS-ICP, TPS-RPM, RPMNet, and classical DOT methods, are to be discussed and compared. For different levels of degradation, the numerical results demonstrate that the proposed methods perform more favorably and robustly than the other methods 
650 4 |a Journal Article 
700 1 |a Bian, Wei  |e verfasserin  |4 aut 
700 1 |a Xue, Xiaoping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 03., Seite 5650-5662  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:03  |g pages:5650-5662 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3459594  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 03  |h 5650-5662