Hierarchically Ordered Pore Engineering of Carbon Supports with High-Density Edge-Type Single-Atom Sites to Boost Electrochemical CO2 Reduction

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 48 vom: 22. Nov., Seite e2409531
1. Verfasser: Hu, Chenghong (VerfasserIn)
Weitere Verfasser: Hong, Ximeng, Liu, Miaoling, Shen, Kui, Chen, Liyu, Li, Yingwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Zn–CO2 battery edge electrochemical CO2 reduction electronic modification single‐atom catalyst
LEADER 01000caa a22002652 4500
001 NLM378478761
003 DE-627
005 20241128232051.0
007 cr uuu---uuuuu
008 241003s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202409531  |2 doi 
028 5 2 |a pubmed24n1616.xml 
035 |a (DE-627)NLM378478761 
035 |a (NLM)39361258 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Chenghong  |e verfasserin  |4 aut 
245 1 0 |a Hierarchically Ordered Pore Engineering of Carbon Supports with High-Density Edge-Type Single-Atom Sites to Boost Electrochemical CO2 Reduction 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Metal sites at the edge of the carbon matrix possess unique geometric and electronic structures, exhibiting higher intrinsic activity than in-plane sites. However, creating single-atom catalysts with high-density edge sites remains challenging. Herein, the hierarchically ordered pore engineering of metal-organic framework-based materials to construct high-density edge-type single-atomic Ni sites for electrochemical CO2 reduction reaction (CO2RR) is reported. The created ordered macroporous structure can expose enriched edges, further increased by hollowing the pore walls, which overcomes the low edge percentage in the traditional microporous substrates. The prepared single-atomic Ni sites on the ordered macroporous carbon with ultra-thin hollow walls (Ni/H-OMC) exhibit Faraday efficiencies of CO above 90% in an ultra-wide potential window of 600 mV and a turnover frequency of 3.4 × 104 h-1, much superior than that of the microporous material with dominant plane-type sites. Theory calculations reveal that NiN4 sites at the edges have a significantly disrupted charge distribution, forming electron-rich Ni centers with enhanced adsorption ability with *COOH, thereby boosting CO2RR efficiency. Furthermore, a Zn-CO2 battery using the Ni/H-OMC cathode shows an unprecedentedly high power density of 15.9 mW cm-2 and maintains an exceptionally stable charge-discharge performance over 100 h 
650 4 |a Journal Article 
650 4 |a Zn–CO2 battery 
650 4 |a edge 
650 4 |a electrochemical CO2 reduction 
650 4 |a electronic modification 
650 4 |a single‐atom catalyst 
700 1 |a Hong, Ximeng  |e verfasserin  |4 aut 
700 1 |a Liu, Miaoling  |e verfasserin  |4 aut 
700 1 |a Shen, Kui  |e verfasserin  |4 aut 
700 1 |a Chen, Liyu  |e verfasserin  |4 aut 
700 1 |a Li, Yingwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 48 vom: 22. Nov., Seite e2409531  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:48  |g day:22  |g month:11  |g pages:e2409531 
856 4 0 |u http://dx.doi.org/10.1002/adma.202409531  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 48  |b 22  |c 11  |h e2409531