Event-Assisted Blurriness Representation Learning for Blurry Image Unfolding

The goal of blurry image deblurring and unfolding task is to recover a single sharp frame or a sequence from a blurry one. Recently, its performance is greatly improved with introduction of a bio-inspired visual sensor, event camera. Most existing event-assisted deblurring methods focus on the desig...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 30., Seite 5824-5836
1. Verfasser: Zhang, Pengyu (VerfasserIn)
Weitere Verfasser: Ju, Hao, Yu, Lei, He, Weihua, Wang, Yaoyuan, Zhang, Ziyang, Xu, Qi, Li, Shengming, Wang, Dong, Lu, Huchuan, Jia, Xu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM378420720
003 DE-627
005 20241016232546.0
007 cr uuu---uuuuu
008 241003s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3468023  |2 doi 
028 5 2 |a pubmed24n1569.xml 
035 |a (DE-627)NLM378420720 
035 |a (NLM)39352831 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Pengyu  |e verfasserin  |4 aut 
245 1 0 |a Event-Assisted Blurriness Representation Learning for Blurry Image Unfolding 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The goal of blurry image deblurring and unfolding task is to recover a single sharp frame or a sequence from a blurry one. Recently, its performance is greatly improved with introduction of a bio-inspired visual sensor, event camera. Most existing event-assisted deblurring methods focus on the design of powerful network architectures and effective training strategy, while ignoring the role of blur modeling in removing various blur in dynamic scenes. In this work, we propose to implicitly model blur in an image by computing blurriness representation with an event-assisted blurriness encoder. The learning of blurriness representation is formulated as a ranking problem based on specially synthesized pairs. Blurriness-aware image unfolding is achieved by integrating blur relevant information contained in the representation into a base unfolding network. The integration is mainly realized by the proposed blurriness-guided modulation and multi-scale aggregation modules. Experiments on GOPRO and HQF datasets show favorable performance of the proposed method against state-of-the-art approaches. More results on real-world data validate its effectiveness in recovering a sequence of latent sharp frames from a blurry image 
650 4 |a Journal Article 
700 1 |a Ju, Hao  |e verfasserin  |4 aut 
700 1 |a Yu, Lei  |e verfasserin  |4 aut 
700 1 |a He, Weihua  |e verfasserin  |4 aut 
700 1 |a Wang, Yaoyuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Ziyang  |e verfasserin  |4 aut 
700 1 |a Xu, Qi  |e verfasserin  |4 aut 
700 1 |a Li, Shengming  |e verfasserin  |4 aut 
700 1 |a Wang, Dong  |e verfasserin  |4 aut 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
700 1 |a Jia, Xu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 30., Seite 5824-5836  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:30  |g pages:5824-5836 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3468023  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 30  |h 5824-5836