Sustainable Nanofibril Interfaces for Strain-Resilient and Multimodal Porous Bioelectronics
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 28. Sept., Seite e2411587 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article metabolism and consumption monitoring microfluidics nanofibril interfaces porous soft bioelectronics strain resilience |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Porous soft bioelectronics have attracted significant attention due to their high breathability, long-term biocompatibility, and other unique features inaccessible in nonporous counterparts. However, fabricating high-quality multimodal bioelectronic components that operate stably under strain on porous substrates, along with integrating microfluidics for sweat management, remains challenging. In this study, cellulose nanofibrils (CNF) are explored, biomass-derived sustainable biomaterials, as nanofibril interfaces with unprecedented interfacial robustness to enable high-quality printing of strain-resilient bioelectronics on porous substrates by reducing surface roughness and creating mechanical heterogeneity. Also, CNF-based microfluidics can provide continuous sweat collection and refreshment, crucial for accurate biochemical sensing. Building upon these advancements, a multimodal porous wearable bioelectronic system is further developed capable of simultaneously detecting electrocardiograms and glucose and beta-hydroxybutyrate in sweat for monitoring energy metabolism and consumption. This work introduces novel strategies for fabricating high-quality, strain-resilient porous bioelectronics with customizable multimodalities to meet arising personalized healthcare needs |
---|---|
Beschreibung: | Date Revised 28.09.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202411587 |