SmJAZ3/4 positively and SmJAZ8 negatively regulates salt tolerance in transgenic Arabidopsis thaliana
Copyright © 2024 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 216(2024) vom: 28. Nov., Seite 109151 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Methyl jasmonate Salt stress Salvia miltiorrhiza Bunge SmJAZ3/4/8 Cyclopentanes Oxylipins Acetates methyl jasmonate 900N171A0F mehr... |
Zusammenfassung: | Copyright © 2024 Elsevier Masson SAS. All rights reserved. Salvia miltiorrhiza Bunge, a model plant for medicinal research, is extensively utilized for its dried roots and rhizomes for treatment of various diseases. Soil salinization hinders the large-scale cultivation and industrial production of S. miltiorrhiza by affecting its active compounds. Methyl jasmonate (MeJA) is a crucial plant hormone that regulates plant responses under salt stress. Jasmonate zim domain (JAZ) proteins function as transcriptional repressors in jasmonic acid (JA) signaling pathways. This study explores the interaction between JA and salt stress by using transgenic Arabidopsis thaliana to elucidate the roles of SmJAZ3, SmJAZ4, and SmJAZ8. We found that 2.5 μM MeJA reduced the inhibitory effect of 150 mM NaCl on wild-type seed germination, and this effect was reversed by 15 μM dihydroxyindole-2-carboxylic acid (DIECA). Similar results were observed in transgenic A. thaliana lines overexpressing SmJAZ3/4/8. Inclusion of SmJAZ3/4 enhanced salt resistance by increasing antioxidant enzyme activity, chlorophyll content, proline content, and Na+/K+ content, while SmJAZ8 had the opposite effect. These findings suggest that appropriate concentrations of MeJA can alleviate the negative effect of salt stress on plant growth and development. Investigating the salt tolerance of SmJAZ3/4/8 is significant for cultivating high-quality salt-tolerant S. miltiorrhiza |
---|---|
Beschreibung: | Date Completed 07.11.2024 Date Revised 07.11.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2024.109151 |