|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM378147242 |
003 |
DE-627 |
005 |
20241116232439.0 |
007 |
cr uuu---uuuuu |
008 |
240927s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202408448
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1603.xml
|
035 |
|
|
|a (DE-627)NLM378147242
|
035 |
|
|
|a (NLM)39328020
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Yongrui
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Solution-Processed Micro-Nanostructured Electron Transport Layer via Bubble-Assisted Assembly for Efficient Perovskite Photovoltaics
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 15.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Organic-inorganic halide perovskite solar cells (PSCs) have attracted significant attention in photovoltaic research, owing to their superior optoelectronic properties and cost-effective manufacturing techniques. However, the unbalanced charge carrier diffusion length in perovskite materials leads to the recombination of photogenerated electrons and holes. The inefficient charge carrier collecting process severely affects the power conversion efficiency (PCE) of the PSCs. Herein, a solution-processed SnO2 array electron transport layer with precisely tunable micro-nanostructures is fabricated via a bubble-template-assisted approach, serving as both electron transport layers and scaffolds for the perovskite layer. Due to the optimized electron transporting pathway and enlarged perovskite grain size, the PSCs achieve a PCE of 25.35% (25.07% certificated PCE)
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a bubble‐assisted patterning
|
650 |
|
4 |
|a charge carrier dynamics
|
650 |
|
4 |
|a micro‐nanostructured interface
|
650 |
|
4 |
|a perovskite photovoltaics
|
650 |
|
4 |
|a solar cells
|
700 |
1 |
|
|a Min, Fanyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yiyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Lutong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Long, Haoran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qu, Zhiyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Kun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Juehan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meng, Lei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qiao, Yali
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Yanlin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 46 vom: 05. Nov., Seite e2408448
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:46
|g day:05
|g month:11
|g pages:e2408448
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202408448
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 46
|b 05
|c 11
|h e2408448
|