Relationship between clopidogrel resistance and genetic variability in Kawasaki disease children with coronary artery lesions

Objective: To analyze the distribution of clopidogrel metabolism-related gene variability in Kawasaki disease (KD) children with coronary artery lesions (CAL) across different age groups and the impact of genetic variability on the efficacy of clopidogrel antiplatelet therapy. Methods: A retrospecti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Zhonghua er ke za zhi = Chinese journal of pediatrics. - 1960. - 62(2024), 10 vom: 02. Okt., Seite 981-988
1. Verfasser: Cao, Y Y (VerfasserIn)
Weitere Verfasser: Pan, Q Y, Li, J, Zhong, X F, Liang, X C, He, L, Chu, C, Zhao, Q M, Zhao, L, Wang, F, Sun, S N, Lin, Y X, Huang, G Y, Liu, F
Format: Online-Aufsatz
Sprache:Chinese
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Zhonghua er ke za zhi = Chinese journal of pediatrics
Schlagworte:English Abstract Journal Article Clopidogrel A74586SNO7 Cytochrome P-450 CYP2C19 EC 1.14.14.1 Platelet Aggregation Inhibitors Aryldialkylphosphatase EC 3.1.8.1 ATP Binding Cassette Transporter, Subfamily B mehr... ABCB1 protein, human PON1 protein, human CYP2C19 protein, human
LEADER 01000caa a22002652c 4500
001 NLM378146718
003 DE-627
005 20250306171114.0
007 cr uuu---uuuuu
008 240927s2024 xx |||||o 00| ||chi c
024 7 |a 10.3760/cma.j.cn112140-20240802-00548  |2 doi 
028 5 2 |a pubmed25n1259.xml 
035 |a (DE-627)NLM378146718 
035 |a (NLM)39327966 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a chi 
100 1 |a Cao, Y Y  |e verfasserin  |4 aut 
245 1 0 |a Relationship between clopidogrel resistance and genetic variability in Kawasaki disease children with coronary artery lesions 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.09.2024 
500 |a Date Revised 27.09.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Objective: To analyze the distribution of clopidogrel metabolism-related gene variability in Kawasaki disease (KD) children with coronary artery lesions (CAL) across different age groups and the impact of genetic variability on the efficacy of clopidogrel antiplatelet therapy. Methods: A retrospective cohort study was conducted. Clinical data were collected from 46 KD children with CAL who were hospitalized in the Cardiovascular Center of Children's Hospital of Fudan University between January 2021 and August 2022 and were treated with clopidogrel, including gender, age, body mass index, course of KD, CAL severity grade, and baseline platelet count. According to their age, the children were divided into ≥2-year-old group and <2-year-old group. Their platelet responsiveness was assessed by adenosine diphosphate-induced platelet inhibition rate (ADPi) calculated via thromboelastography, and children were categorized into high on-treatment platelet reactivity (HTPR) and normal on-treatment platelet reactivity (NTPR) groups. Genotypes of CYP2C19, PON1 and ABCB1 were detected. The t test, one-way analysis of variance and Chi-square test were used for intergroup comparison. Results: Among the 46 KD children with CAL, 34 were male and 12 were female; 37 were ≥2-year-old and 9 were <2-year-old; 25 cases were in the HTPR group and 21 cases were in the NTPR group, with 19 HTPR and 18 NTPR in the ≥2-year-old group, and 6 HTPR and 3 NTPR in the <2-year-old group. Genetic analysis showed that 92 alleles among the 46 children, with frequencies of CYP2C19*1, CYP2C19*2, CYP2C19*3, CYP2C19*17, PON1 192Q, PON1 192R, ABCB1 3435C, ABCB1 3435T at 59% (54/92), 32% (29/92), 9% (8/92), 1% (1/92), 36% (36/92), 64% (59/92), 63% (58/92) and 37% (34/92), respectively. Analysis of the impact of genotype on ADPi revealed that in children aged ≥2 years, those with CYP2C19*1/*3 genotype had significantly lower ADPi than those with CYP2C19*1/*1 genotype ((34±15)% vs. (61±29)%, t=2.18, P=0.036). There were also no significant difference in ADPi among children with PON1 192Q homozygous, PON1 192R heterozygote and PON1 192R homozygous genotypes ((40±22)% vs. (52±33)% vs. (65±27)%, F=2.17, P=0.130), or among those with ABCB1 3435C homozygous, ABCB1 3435T heterozygote and ABCB1 3435T homozygous genotypes ((55±34)% vs. (60±27)% vs. (49±24)%, F=0.33, P=0.719). In <2-year-old group, there were no significant differences in ADPi across CYP2C19*1/*1, CYP2C19*1/*2 and CYP2C19*2*2 genotypes ((40±20)% vs. (53±37)% vs. (34±16)%, F=0.37, P>0.05). There were no significant differences in ADPi across CYP2C19*1/*1 and CYP2C19*1/*3 genotypes ((44±27)% vs. (42±20)%, t=0.08, P>0.05). There were no significant differences in ADPi across PON1 192Q homozygous, PON1 192R heterozygote and PON1 192R homozygous genotypes (45% vs. (55±27)% vs. (24±5)%, F=1.83, P>0.05). There were no significant differences in ADPi across ABCB1 3435C homozygous, ABCB1 3435T heterozygote and ABCB1 3435T homozygous genotypes ((36±16)% vs. (50±35)% vs. 45%, F=0.29, P>0.05). The risk analysis of HTPR in different genotypes revealed that in children aged ≥2 years, carrying at least 1 or 2 loss-of-function alleles of CYP2C19 was a risk factor for HTPR (OR=4.69, 10.00, 95%CI 1.11-19.83, 0.84-119.32, P=0.033, 0.046, respectively), and PON1 192R homozygosity and carrying at least one PON1 192R allele were protective factors against HTPR (OR=0.08, 0.13, 95%CI 0.01-0.86, 0.01-1.19, P=0.019, 0.043, respectively). Conclusion: KD children aged ≥2 years carrying CYP2C19 loss-of-function alleles and PON1 192Q are more likely to develop HTPR 
650 4 |a English Abstract 
650 4 |a Journal Article 
650 7 |a Clopidogrel  |2 NLM 
650 7 |a A74586SNO7  |2 NLM 
650 7 |a Cytochrome P-450 CYP2C19  |2 NLM 
650 7 |a EC 1.14.14.1  |2 NLM 
650 7 |a Platelet Aggregation Inhibitors  |2 NLM 
650 7 |a Aryldialkylphosphatase  |2 NLM 
650 7 |a EC 3.1.8.1  |2 NLM 
650 7 |a ATP Binding Cassette Transporter, Subfamily B  |2 NLM 
650 7 |a ABCB1 protein, human  |2 NLM 
650 7 |a PON1 protein, human  |2 NLM 
650 7 |a EC 3.1.8.1  |2 NLM 
650 7 |a CYP2C19 protein, human  |2 NLM 
650 7 |a EC 1.14.14.1  |2 NLM 
700 1 |a Pan, Q Y  |e verfasserin  |4 aut 
700 1 |a Li, J  |e verfasserin  |4 aut 
700 1 |a Zhong, X F  |e verfasserin  |4 aut 
700 1 |a Liang, X C  |e verfasserin  |4 aut 
700 1 |a He, L  |e verfasserin  |4 aut 
700 1 |a Chu, C  |e verfasserin  |4 aut 
700 1 |a Zhao, Q M  |e verfasserin  |4 aut 
700 1 |a Zhao, L  |e verfasserin  |4 aut 
700 1 |a Wang, F  |e verfasserin  |4 aut 
700 1 |a Sun, S N  |e verfasserin  |4 aut 
700 1 |a Lin, Y X  |e verfasserin  |4 aut 
700 1 |a Huang, G Y  |e verfasserin  |4 aut 
700 1 |a Liu, F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Zhonghua er ke za zhi = Chinese journal of pediatrics  |d 1960  |g 62(2024), 10 vom: 02. Okt., Seite 981-988  |w (DE-627)NLM136249191  |x 0578-1310  |7 nnas 
773 1 8 |g volume:62  |g year:2024  |g number:10  |g day:02  |g month:10  |g pages:981-988 
856 4 0 |u http://dx.doi.org/10.3760/cma.j.cn112140-20240802-00548  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_61 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_244 
912 |a GBV_ILN_285 
912 |a GBV_ILN_294 
912 |a GBV_ILN_350 
912 |a GBV_ILN_665 
912 |a GBV_ILN_813 
951 |a AR 
952 |d 62  |j 2024  |e 10  |b 02  |c 10  |h 981-988