|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM378127721 |
003 |
DE-627 |
005 |
20241124231954.0 |
007 |
cr uuu---uuuuu |
008 |
240927s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.wasman.2024.09.019
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1611.xml
|
035 |
|
|
|a (DE-627)NLM378127721
|
035 |
|
|
|a (NLM)39326066
|
035 |
|
|
|a (PII)S0956-053X(24)00506-3
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xiong, Weijie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Co-hydrothermal carbonization of lignocellulosic biomass and swine manure
|b Optimal parameters for enhanced nutrient reclamation, carbon sequestration, and heavy metals passivation
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.11.2024
|
500 |
|
|
|a Date Revised 23.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2024 Elsevier Ltd. All rights reserved.
|
520 |
|
|
|a Hydrochar, the primary product of hydrothermal carbonization (HTC) of wet organic waste, is recognized as a versatile, carbon-abundant material with diverse applications. However, optimizing its performance for specific uses remains challenging. Therefore, this study introduced a co-HTC process involving carbon-rich lignocellulosic materials and ash-rich livestock manure [i.e., Zanthoxylum bungeanum branch residue (ZB) and swine manure (SM), respectively]. The impacts of HTC temperature (i.e., 180 °C, 220 °C, and 240 °C) and mass ratios (i.e., 1:0, 7:3, 5:5, 3:7, and 0:1) on hydrochar properties (e.g., pH, EC, nutrient contents, heavy metal content and availability, chemical stability, etc) and the characteristics of process water were evaluated. Results reveal that co-HTC dramatically improved the quality of hydrochars compared with that derived from a single feedstock. Notably, the ZB:SM ratio had a more substantial impact on total nutrient content, carbon stability, and heavy metal accumulation and mobility. Additionally, the synergistic effects of ZB and SM were greatly dependent on the HTC temperature. By adjusting the feedstock mass ratio and HTC temperature, a highly-functionalized hydrochar can be produced. For example, hydrochars produced at 240 °C with a 7:3 ZB to SM ratio (HC240-7) is optimal for degraded soil amendment, enhancing carbon sequestration and nutrient supplementation. Results from this study could provide valuable insights for improving waste management through HTC and expanding the environmental and agricultural application of hydrochar
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Carbon sequestration
|
650 |
|
4 |
|a Feedstock complementarity
|
650 |
|
4 |
|a Hydrothermal carbonization
|
650 |
|
4 |
|a Nutrient recycling
|
650 |
|
4 |
|a Synergistic effects
|
650 |
|
7 |
|a Manure
|2 NLM
|
650 |
|
7 |
|a Metals, Heavy
|2 NLM
|
650 |
|
7 |
|a Lignin
|2 NLM
|
650 |
|
7 |
|a 9005-53-2
|2 NLM
|
650 |
|
7 |
|a lignocellulose
|2 NLM
|
650 |
|
7 |
|a 11132-73-3
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a Luo, Yuping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shangguan, Wengao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Yue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Ronghua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Dan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Muyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zengyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Ran
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Waste management (New York, N.Y.)
|d 1999
|g 190(2024) vom: 15. Nov., Seite 174-185
|w (DE-627)NLM098197061
|x 1879-2456
|7 nnns
|
773 |
1 |
8 |
|g volume:190
|g year:2024
|g day:15
|g month:11
|g pages:174-185
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.wasman.2024.09.019
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 190
|j 2024
|b 15
|c 11
|h 174-185
|