Stabilizing and Accelerating Federated Learning on Heterogeneous Data With Partial Client Participation
Federated learning (FL) commonly encourages the clients to perform multiple local updates before the global aggregation, thus avoiding frequent model exchanges and relieving the communication bottleneck between the server and clients. Though empirically effective, the negative impact of multiple loc...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 26. Sept.
|
1. Verfasser: |
Zhang, Hao
(VerfasserIn) |
Weitere Verfasser: |
Li, Chenglin,
Dai, Wenrui,
Zheng, Ziyang,
Zou, Junni,
Xiong, Hongkai |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |