Numerical Simulation of Maximum Spreading of an Impacting Ferrofluid Droplet under a Vertical Magnetic Field

Theoretical modeling is proposed to predict the maximum spreading of water-based ferrofluid droplets impacting upon dry surfaces influenced by a vertical magnetic field. Constructed on the principle of energy balance, this model demonstrates excellent agreement with numerical findings across various...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 40 vom: 08. Okt., Seite 20859-20871
1. Verfasser: Huang, Jia-Cai (VerfasserIn)
Weitere Verfasser: Han, Tian-Yang, Zhang, Jie, Ni, Ming-Jiu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM378113488
003 DE-627
005 20241008232422.0
007 cr uuu---uuuuu
008 240926s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c01084  |2 doi 
028 5 2 |a pubmed24n1561.xml 
035 |a (DE-627)NLM378113488 
035 |a (NLM)39324641 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Jia-Cai  |e verfasserin  |4 aut 
245 1 0 |a Numerical Simulation of Maximum Spreading of an Impacting Ferrofluid Droplet under a Vertical Magnetic Field 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Theoretical modeling is proposed to predict the maximum spreading of water-based ferrofluid droplets impacting upon dry surfaces influenced by a vertical magnetic field. Constructed on the principle of energy balance, this model demonstrates excellent agreement with numerical findings across various impact velocities, contact angles, and magnetic strengths. Notably, as magnetic field strength escalates, magnetic forces prevail over viscous and capillary forces, exerting a significant influence on spreading dynamics and diminishing the maximum spreading diameter of ferrofluid droplets if the impacting shape is spherical. However, for freely falling droplets, the shape becomes prolate before impacting and the promoted surface energy balances the magnetic inhibitory effect on droplet spreading, thus resulting in an almost unchanged maximum spreading diameter. By postulating complete conversion of initial kinetic energy into magnetic energy, a scaling law is derived for maximum spreading diameter under extremely high magnetic fields. Further interpolation with viscous dissipation and capillary effects enables universal rescaling under diverse impact conditions. Through comparison with numerical outcomes, the validity of our theoretical model is affirmed, establishing a balanced formula between distinct energy components for predicting maximum spreading diameter of ferrofluid droplets accurately 
650 4 |a Journal Article 
700 1 |a Han, Tian-Yang  |e verfasserin  |4 aut 
700 1 |a Zhang, Jie  |e verfasserin  |4 aut 
700 1 |a Ni, Ming-Jiu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 40(2024), 40 vom: 08. Okt., Seite 20859-20871  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:40  |g day:08  |g month:10  |g pages:20859-20871 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c01084  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 40  |b 08  |c 10  |h 20859-20871