Optimizing waste handling with interactive AI : Prompt-guided segmentation of construction and demolition waste using computer vision

Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.

Détails bibliographiques
Publié dans:Waste management (New York, N.Y.). - 1999. - 190(2024) vom: 15. Dez., Seite 149-160
Auteur principal: Sirimewan, Diani (Auteur)
Autres auteurs: Kunananthaseelan, Nilakshan, Raman, Sudharshan, Garcia, Reyes, Arashpour, Mehrdad
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Waste management (New York, N.Y.)
Sujets:Journal Article Automated waste recognition Automation Computer vision Construction and demolition waste Prompt-guided segmentation Waste monitoring and sorting
LEADER 01000caa a22002652c 4500
001 NLM378083139
003 DE-627
005 20250306170232.0
007 cr uuu---uuuuu
008 240926s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2024.09.018  |2 doi 
028 5 2 |a pubmed25n1259.xml 
035 |a (DE-627)NLM378083139 
035 |a (NLM)39321600 
035 |a (PII)S0956-053X(24)00505-1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sirimewan, Diani  |e verfasserin  |4 aut 
245 1 0 |a Optimizing waste handling with interactive AI  |b Prompt-guided segmentation of construction and demolition waste using computer vision 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.11.2024 
500 |a Date Revised 23.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. 
520 |a Optimized and automated methods for handling construction and demolition waste (CDW) are crucial for improving the resource recovery process in waste management. Automated waste recognition is a critical step in this process, and it relies on robust image segmentation techniques. Prompt-guided segmentation methods provide promising results for specific user needs in image recognition. However, the current state-of-the-art segmentation methods trained for generic images perform unsatisfactorily on CDW recognition tasks, indicating a domain gap. To address this gap, a user-guided segmentation pipeline is developed in this study that leverages prompts such as bounding boxes, points, and text to segment CDW in cluttered environments. The adopted approach achieves a class-wise performance of around 70 % in several waste categories, surpassing the state-of-the-art algorithms by 9 % on average. This method allows users to create accurate segmentations by drawing a bounding box, clicking, or providing a text prompt, minimizing the time spent on detailed annotations. Integrating this human-machine system as a user-friendly interface into material recovery facilities enhances the monitoring and processing of waste, leading to better resource recovery outcomes in waste management 
650 4 |a Journal Article 
650 4 |a Automated waste recognition 
650 4 |a Automation 
650 4 |a Computer vision 
650 4 |a Construction and demolition waste 
650 4 |a Prompt-guided segmentation 
650 4 |a Waste monitoring and sorting 
700 1 |a Kunananthaseelan, Nilakshan  |e verfasserin  |4 aut 
700 1 |a Raman, Sudharshan  |e verfasserin  |4 aut 
700 1 |a Garcia, Reyes  |e verfasserin  |4 aut 
700 1 |a Arashpour, Mehrdad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 190(2024) vom: 15. Dez., Seite 149-160  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:190  |g year:2024  |g day:15  |g month:12  |g pages:149-160 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2024.09.018  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 190  |j 2024  |b 15  |c 12  |h 149-160