Mimicking Antiferroelectrics with Ferroelectric Superlattices

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 46 vom: 09. Nov., Seite e2403985
1. Verfasser: Yin, Chunhai (VerfasserIn)
Weitere Verfasser: Li, Yaqi, Zatterin, Edoardo, Rusu, Dorin, Stylianidis, Evgenios, Hadjimichael, Marios, Aramberri, Hugo, Iñiguez-González, Jorge, Conroy, Michele, Zubko, Pavlo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article antiferroelectricity domains ferroelectric superlattices
Beschreibung
Zusammenfassung:© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Antiferroelectric oxides are promising materials for applications in high-density energy storage, solid-state cooling, and negative capacitance devices. However, the range of oxide antiferroelectrics available today is rather limited. In this work, it is demonstrated that antiferroelectric properties can be electrostatically engineered in artificially layered ferroelectric superlattices. Using a combination of synchrotron X-ray nanodiffraction, scanning transmission electron microscopy, macroscopic electrical measurements, and lateral and vertical piezoresponse force microscopy in parallel-plate capacitor geometry, a highly reversible field-induced transition is observed from a stable in-plane polarized state to a state with in-plane and out-of-plane polarized nanodomains that mimics, at the domain level, the nonpolar to polar transition of traditional antiferroelectrics, with corresponding polarization-voltage double hysteresis and comparable energy storage capacity. Furthermore, it is found that such superlattices exhibit large out-of-plane dielectric responses without involving flux-closure domain dynamics. These results demonstrate that electrostatic and strain engineering in artificially layered materials offers a promising route for the creation of synthetic antiferroelectrics
Beschreibung:Date Revised 15.11.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202403985