GraphBNC : Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 47 vom: 24. Nov., Seite e2407046
1. Verfasser: Pihlajamäki, Antti (VerfasserIn)
Weitere Verfasser: Matus, María Francisca, Malola, Sami, Häkkinen, Hannu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article graphs machine learning metal nanoclusters molecular dynamics nano–bio interface Gold 7440-57-5 Blood Proteins
LEADER 01000caa a22002652c 4500
001 NLM378049720
003 DE-627
005 20250306165804.0
007 cr uuu---uuuuu
008 240925s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202407046  |2 doi 
028 5 2 |a pubmed25n1259.xml 
035 |a (DE-627)NLM378049720 
035 |a (NLM)39318073 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pihlajamäki, Antti  |e verfasserin  |4 aut 
245 1 0 |a GraphBNC  |b Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2024 
500 |a Date Revised 27.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Hybrid nanostructures between biomolecules and inorganic nanomaterials constitute a largely unexplored field of research, with the potential for novel applications in bioimaging, biosensing, and nanomedicine. Developing such applications relies critically on understanding the dynamical properties of the nano-bio interface. This work introduces and validates a strategy to predict atom-scale interactions between water-soluble gold nanoclusters (AuNCs) and a set of blood proteins (albumin, apolipoprotein, immunoglobulin, and fibrinogen). Graph theory and neural networks are utilized to predict the strengths of interactions in AuNC-protein complexes on a coarse-grained level, which are then optimized in Monte Carlo-based structure search and refined to atomic-scale structures. The training data is based on extensive molecular dynamics (MD) simulations of AuNC-protein complexes, and the validating MD simulations show the robustness of the predictions. This strategy can be generalized to any complexes of inorganic nanostructures and biomolecules provided that one generates enough data about the interactions, and the bioactive parts of the nanostructure can be coarse-grained rationally 
650 4 |a Journal Article 
650 4 |a graphs 
650 4 |a machine learning 
650 4 |a metal nanoclusters 
650 4 |a molecular dynamics 
650 4 |a nano–bio interface 
650 7 |a Gold  |2 NLM 
650 7 |a 7440-57-5  |2 NLM 
650 7 |a Blood Proteins  |2 NLM 
700 1 |a Matus, María Francisca  |e verfasserin  |4 aut 
700 1 |a Malola, Sami  |e verfasserin  |4 aut 
700 1 |a Häkkinen, Hannu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 47 vom: 24. Nov., Seite e2407046  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:47  |g day:24  |g month:11  |g pages:e2407046 
856 4 0 |u http://dx.doi.org/10.1002/adma.202407046  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 47  |b 24  |c 11  |h e2407046