Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks

Developmental plasticity plays a prominent role in shaping the brain's structure during ongoing learning in response to dynamically changing environments. However, the existing network compression methods for deep artificial neural networks (ANNs) and spiking neural networks (SNNs) draw little...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 24. Sept.
1. Verfasser: Han, Bing (VerfasserIn)
Weitere Verfasser: Zhao, Feifei, Zeng, Yi, Shen, Guobin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM378034251
003 DE-627
005 20240925233254.0
007 cr uuu---uuuuu
008 240925s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3467268  |2 doi 
028 5 2 |a pubmed24n1548.xml 
035 |a (DE-627)NLM378034251 
035 |a (NLM)39316493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Bing  |e verfasserin  |4 aut 
245 1 0 |a Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Developmental plasticity plays a prominent role in shaping the brain's structure during ongoing learning in response to dynamically changing environments. However, the existing network compression methods for deep artificial neural networks (ANNs) and spiking neural networks (SNNs) draw little inspiration from brain's developmental plasticity mechanisms, thus limiting their ability to learn efficiently, rapidly, and accurately. This paper proposed a developmental plasticity-inspired adaptive pruning (DPAP) method, with inspiration from the adaptive developmental pruning of dendritic spines, synapses, and neurons according to the "use it or lose it, gradually decay" principle. The proposed DPAP model considers multiple biologically realistic mechanisms (such as dendritic spine dynamic plasticity, activitydependent neural spiking trace, and local synaptic plasticity), with additional adaptive pruning strategy, so that the network structure can be dynamically optimized during learning without any pre-training and retraining. Extensive comparative experiments show consistent and remarkable performance and speed boost with the extremely compressed networks on a diverse set of benchmark tasks for deep ANNs and SNNs, especially the spatio-temporal joint pruning of SNNs in neuromorphic datasets. This work explores how developmental plasticity enables complex deep networks to gradually evolve into brain-like efficient and compact structures, eventually achieving state-of-the-art (SOTA) performance for biologically realistic SNNs 
650 4 |a Journal Article 
700 1 |a Zhao, Feifei  |e verfasserin  |4 aut 
700 1 |a Zeng, Yi  |e verfasserin  |4 aut 
700 1 |a Shen, Guobin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 24. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:24  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3467268  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 24  |c 09