Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly su...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 5456-5467
1. Verfasser: Wang, YongChao (VerfasserIn)
Weitere Verfasser: Xiao, Bin, Bi, Xiuli, Li, Weisheng, Gao, Xinbo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM378034057
003 DE-627
005 20241002232154.0
007 cr uuu---uuuuu
008 240925s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3463412  |2 doi 
028 5 2 |a pubmed24n1555.xml 
035 |a (DE-627)NLM378034057 
035 |a (NLM)39316477 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, YongChao  |e verfasserin  |4 aut 
245 1 0 |a Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters 
650 4 |a Journal Article 
700 1 |a Xiao, Bin  |e verfasserin  |4 aut 
700 1 |a Bi, Xiuli  |e verfasserin  |4 aut 
700 1 |a Li, Weisheng  |e verfasserin  |4 aut 
700 1 |a Gao, Xinbo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 5456-5467  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:5456-5467 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3463412  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 5456-5467