The blue-green light-dependent state transition in the marine phytoplankton Ostreococcus tauri

© 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - (2024) vom: 23. Sept.
1. Verfasser: Kubota, Masato (VerfasserIn)
Weitere Verfasser: Kim, Eunchul, Ishii, Asako, Minagawa, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Ostreococcus tauri Prasinophyceae acclimation green algae photosynthesis state transition
Beschreibung
Zusammenfassung:© 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.
We explored the adaptive mechanisms of Ostreococcus tauri, a marine picophytoplankton with a ubiquitous ocean presence. We aimed to understand its photosynthetic acclimation, as featured in the cryo-EM structure of its photosystem I (PSI) supercomplex. This structure revealed a unique composition involving a phosphorylated Lhcp trimer bound to the PSI core along with two additional Lhcp trimers, suggesting potential state transitions for photoacclimation. To investigate this hypothesis, we conducted a series of biochemical and physiological experiments. We analyzed absorption spectra to differentiate between PSI and PSII, particularly focusing on blue-green wavelengths, and examined the effects of specific excitation of Lhcp with green light, including its phosphorylation and the formation of the PSI-LHCI-Lhcp supercomplex. Our experiments clarified the distinctive effects attributable to absorption by pigments associated with Lhcp. Exciting Lhcp with green light induced its phosphorylation, leading to the formation of the PSI-LHCI-Lhcp supercomplex. Notably, the functional antenna size of PSI could reversibly expand in response to green light, demonstrating its state transition capability. These findings not only highlight the unique photosynthetic acclimation adapted to the marine environment but also suggest a possible ancestral role of state transitions in green plants, given the phylogenetic position of Prasinophyceae
Beschreibung:Date Revised 23.09.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1469-8137
DOI:10.1111/nph.20137