Single Atom Engineered Antibiotics Overcome Bacterial Resistance

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 23. Sept., Seite e2410652
1. Verfasser: Panáček, David (VerfasserIn)
Weitere Verfasser: Belza, Jan, Hochvaldová, Lucie, Baďura, Zdeněk, Zoppellaro, Giorgio, Šrejber, Martin, Malina, Tomáš, Šedajová, Veronika, Paloncýová, Markéta, Langer, Rostislav, Zdražil, Lukáš, Zeng, Jianrong, Li, Lina, Zhao, En, Chen, Zupeng, Xiong, Zhiqiang, Li, Ruibin, Panáček, Aleš, Večeřová, Renata, Kučová, Pavla, Kolář, Milan, Otyepka, Michal, Bakandritsos, Aristides, Zbořil, Radek
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article antibiotic cytocompatibility manganese multi‐drug resistance single‐atom
Beschreibung
Zusammenfassung:© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
The outbreak of antibiotic-resistant bacteria, or "superbugs", poses a global public health hazard due to their resilience against the most effective last-line antibiotics. Identifying potent antibacterial agents capable of evading bacterial resistance mechanisms represents the ultimate defense strategy. This study shows that -the otherwise essential micronutrient- manganese turns into a broad-spectrum potent antibiotic when coordinated with a carboxylated nitrogen-doped graphene. This antibiotic material (termed NGA-Mn) not only inhibits the growth of a wide spectrum of multidrug-resistant bacteria but also heals wounds infected by bacteria in vivo and, most importantly, effectively evades bacterial resistance development. NGA-Mn exhibits up to 25-fold higher cytocompatibility to human cells than its minimum bacterial inhibitory concentration, demonstrating its potential as a next-generation antibacterial agent. Experimental findings suggest that NGA-Mn acts on the outer side of the bacterial cell membrane via a multimolecular collective binding, blocking vital functions in both Gram-positive and Gram-negative bacteria. The results underscore the potential of single-atom engineering toward potent antibiotics, offering simultaneously a long-sought solution for evading drug resistance development while being cytocompatible to human cells
Beschreibung:Date Revised 23.09.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202410652