Sensorless End-to-End Freehand Three-dimensional Ultrasound Reconstruction with Physics Guided Deep Learning

Three-dimensional ultrasound (3D US) imaging with freehand scanning is utilized in cardiac, obstetric, abdominal, and vascular examinations. While 3D US using either a 'wobbler' or 'matrix' transducer suffers from a small field of view and low acquisition rates, freehand scanning...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - PP(2024) vom: 20. Sept.
1. Verfasser: Dou, Yimeng (VerfasserIn)
Weitere Verfasser: Mu, Fangzhou, Li, Yin, Varghese, Tomy
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM377889962
003 DE-627
005 20240922000624.0
007 cr uuu---uuuuu
008 240922s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2024.3465214  |2 doi 
028 5 2 |a pubmed24n1542.xml 
035 |a (DE-627)NLM377889962 
035 |a (NLM)39302786 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dou, Yimeng  |e verfasserin  |4 aut 
245 1 0 |a Sensorless End-to-End Freehand Three-dimensional Ultrasound Reconstruction with Physics Guided Deep Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Three-dimensional ultrasound (3D US) imaging with freehand scanning is utilized in cardiac, obstetric, abdominal, and vascular examinations. While 3D US using either a 'wobbler' or 'matrix' transducer suffers from a small field of view and low acquisition rates, freehand scanning offers significant advantages due to its ease of use. However, current 3D US volumetric reconstruction methods with freehand sweeps are limited by imaging plane shifts along the scanning path, i.e., out-of-plane (OOP) motion. Prior studies have incorporated motion sensors attached to the transducer, which is cumbersome and inconvenient in a clinical setting. Recent work has introduced deep neural networks (DNNs) with 3D convolutions to estimate the position of imaging planes from a series of input frames. These approaches, however, fall short for estimating OOP motion. The goal of this paper is to bridge the gap by designing a novel, physics inspired DNN for freehand 3D US reconstruction without motion sensors, aiming to improve the reconstruction quality, and at the same time, to reduce computational resources needed for training and inference. To this end, we present our physics guided learning-based prediction of pose information (PLPPI) model for 3D freehand US reconstruction without 3D convolution. PLPPI yields significantly more accurate reconstructions and offers a major reduction in computation time. It attains a performance increase in the double digits in terms of mean percentage error, with up to 106% speedup and 131% reduction in Graphic Processing Unit (GPU) memory usage, when compared to latest deep learning methods 
650 4 |a Journal Article 
700 1 |a Mu, Fangzhou  |e verfasserin  |4 aut 
700 1 |a Li, Yin  |e verfasserin  |4 aut 
700 1 |a Varghese, Tomy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g PP(2024) vom: 20. Sept.  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:20  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2024.3465214  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 20  |c 09