Multi-sensor Learning Enables Information Transfer across Different Sensory Data and Augments Multi-modality Imaging

Multi-modality imaging is widely used in clinical practice and biomedical research to gain a comprehensive understanding of an imaging subject. Currently, multi-modality imaging is accomplished by post hoc fusion of independently reconstructed images under the guidance of mutual information or spati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 20. Sept.
1. Verfasser: Zhu, Lingting (VerfasserIn)
Weitere Verfasser: Chen, Yizheng, Liu, Lianli, Xing, Lei, Yu, Lequan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377889792
003 DE-627
005 20240923235537.0
007 cr uuu---uuuuu
008 240922s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3465649  |2 doi 
028 5 2 |a pubmed24n1546.xml 
035 |a (DE-627)NLM377889792 
035 |a (NLM)39302777 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Lingting  |e verfasserin  |4 aut 
245 1 0 |a Multi-sensor Learning Enables Information Transfer across Different Sensory Data and Augments Multi-modality Imaging 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Multi-modality imaging is widely used in clinical practice and biomedical research to gain a comprehensive understanding of an imaging subject. Currently, multi-modality imaging is accomplished by post hoc fusion of independently reconstructed images under the guidance of mutual information or spatially registered hardware, which limits the accuracy and utility of multi-modality imaging. Here, we investigate a data-driven multi-modality imaging (DMI) strategy for synergetic imaging of CT and MRI. We reveal two distinct types of features in multi-modality imaging, namely intra- and inter-modality features, and present a multi-sensor learning (MSL) framework to utilize the crossover inter-modality features for augmented multi-modality imaging. The MSL imaging approach breaks down the boundaries of traditional imaging modalities and allows for optimal hybridization of CT and MRI, which maximizes the use of sensory data. We showcase the effectiveness of our DMI strategy through synergetic CT-MRI brain imaging. The principle of DMI is quite general and holds enormous potential for various DMI applications across disciplines 
650 4 |a Journal Article 
700 1 |a Chen, Yizheng  |e verfasserin  |4 aut 
700 1 |a Liu, Lianli  |e verfasserin  |4 aut 
700 1 |a Xing, Lei  |e verfasserin  |4 aut 
700 1 |a Yu, Lequan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 20. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:20  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3465649  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 20  |c 09