Different model assumptions about plant hydraulics and photosynthetic temperature acclimation yield diverging implications for tropical forest gross primary production under warming

© 2024 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 9 vom: 20. Sept., Seite e17449
1. Verfasser: Zarakas, Claire M (VerfasserIn)
Weitere Verfasser: Swann, Abigail L S, Koven, Charles D, Smith, Marielle N, Taylor, Tyeen C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article acclimation photosynthesis stomatal conductance temperature temperature sensitivity vapor pressure deficit
LEADER 01000caa a22002652 4500
001 NLM377879525
003 DE-627
005 20240922000536.0
007 cr uuu---uuuuu
008 240920s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.17449  |2 doi 
028 5 2 |a pubmed24n1542.xml 
035 |a (DE-627)NLM377879525 
035 |a (NLM)39301722 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zarakas, Claire M  |e verfasserin  |4 aut 
245 1 0 |a Different model assumptions about plant hydraulics and photosynthetic temperature acclimation yield diverging implications for tropical forest gross primary production under warming 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.09.2024 
500 |a Date Revised 20.09.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 John Wiley & Sons Ltd. 
520 |a Tropical forest photosynthesis can decline at high temperatures due to (1) biochemical responses to increasing temperature and (2) stomatal responses to increasing vapor pressure deficit (VPD), which is associated with increasing temperature. It is challenging to disentangle the influence of these two mechanisms on photosynthesis in observations, because temperature and VPD are tightly correlated in tropical forests. Nonetheless, quantifying the relative strength of these two mechanisms is essential for understanding how tropical gross primary production (GPP) will respond to climate change, because increasing atmospheric CO2 concentration may partially offset VPD-driven stomatal responses, but is not expected to mitigate the effects of temperature-driven biochemical responses. We used two terrestrial biosphere models to quantify how physiological process assumptions (photosynthetic temperature acclimation and plant hydraulic stress) and functional traits (e.g., maximum xylem conductivity) influence the relative strength of modeled temperature versus VPD effects on light-saturated GPP at an Amazonian forest site, a seasonally dry tropical forest site, and an experimental tropical forest mesocosm. By simulating idealized climate change scenarios, we quantified the divergence in GPP predictions under model configurations with stronger VPD effects compared with stronger direct temperature effects. Assumptions consistent with stronger direct temperature effects resulted in larger GPP declines under warming, while assumptions consistent with stronger VPD effects resulted in more resilient GPP under warming. Our findings underscore the importance of quantifying the role of direct temperature and indirect VPD effects for projecting the resilience of tropical forests in the future, and demonstrate that the relative strength of temperature versus VPD effects in models is highly sensitive to plant functional parameters and structural assumptions about photosynthetic temperature acclimation and plant hydraulics 
650 4 |a Journal Article 
650 4 |a acclimation 
650 4 |a photosynthesis 
650 4 |a stomatal conductance 
650 4 |a temperature 
650 4 |a temperature sensitivity 
650 4 |a vapor pressure deficit 
700 1 |a Swann, Abigail L S  |e verfasserin  |4 aut 
700 1 |a Koven, Charles D  |e verfasserin  |4 aut 
700 1 |a Smith, Marielle N  |e verfasserin  |4 aut 
700 1 |a Taylor, Tyeen C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 30(2024), 9 vom: 20. Sept., Seite e17449  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:9  |g day:20  |g month:09  |g pages:e17449 
856 4 0 |u http://dx.doi.org/10.1111/gcb.17449  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 9  |b 20  |c 09  |h e17449