Exploring the Spectral Prior for Hyperspectral Image Super-Resolution

In recent years, many single hyperspectral image super-resolution methods have emerged to enhance the spatial resolution of hyperspectral images without hardware modification. However, existing methods typically face two significant challenges. First, they struggle to handle the high-dimensional nat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 5260-5272
1. Verfasser: Hu, Qian (VerfasserIn)
Weitere Verfasser: Wang, Xinya, Jiang, Junjun, Zhang, Xiao-Ping, Ma, Jiayi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377845345
003 DE-627
005 20240930232501.0
007 cr uuu---uuuuu
008 240920s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3460470  |2 doi 
028 5 2 |a pubmed24n1553.xml 
035 |a (DE-627)NLM377845345 
035 |a (NLM)39298300 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Qian  |e verfasserin  |4 aut 
245 1 0 |a Exploring the Spectral Prior for Hyperspectral Image Super-Resolution 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In recent years, many single hyperspectral image super-resolution methods have emerged to enhance the spatial resolution of hyperspectral images without hardware modification. However, existing methods typically face two significant challenges. First, they struggle to handle the high-dimensional nature of hyperspectral data, which often results in high computational complexity and inefficient information utilization. Second, they have not fully leveraged the abundant spectral information in hyperspectral images. To address these challenges, we propose a novel hyperspectral super-resolution network named SNLSR, which transfers the super-resolution problem into the abundance domain. Our SNLSR leverages a spatial preserve decomposition network to estimate the abundance representations of the input hyperspectral image. Notably, the network acknowledges and utilizes the commonly overlooked spatial correlations of hyperspectral images, leading to better reconstruction performance. Then, the estimated low-resolution abundance is super-resolved through a spatial spectral attention network, where the informative features from both spatial and spectral domains are fully exploited. Considering that the hyperspectral image is highly spectrally correlated, we customize a spectral-wise non-local attention module to mine similar pixels along spectral dimension for high-frequency detail recovery. Extensive experiments demonstrate the superiority of our method over other state-of-the-art methods both visually and metrically. Our code is publicly available at https://github.com/HuQ1an/SNLSR 
650 4 |a Journal Article 
700 1 |a Wang, Xinya  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiao-Ping  |e verfasserin  |4 aut 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 18., Seite 5260-5272  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:18  |g pages:5260-5272 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3460470  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 18  |h 5260-5272