To Boost Zero-Shot Generalization for Embodied Reasoning With Vision-Language Pre-Training

Recently, there exists an increased research interest in embodied artificial intelligence (EAI), which involves an agent learning to perform a specific task when dynamically interacting with the surrounding 3D environment. There into, a new challenge is that many unseen objects may appear due to the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 5370-5381
1. Verfasser: Su, Ke (VerfasserIn)
Weitere Verfasser: Zhang, Xingxing, Zhang, Siyang, Zhu, Jun, Zhang, Bo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM377795917
003 DE-627
005 20250306162303.0
007 cr uuu---uuuuu
008 240919s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3459800  |2 doi 
028 5 2 |a pubmed25n1258.xml 
035 |a (DE-627)NLM377795917 
035 |a (NLM)39292596 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Ke  |e verfasserin  |4 aut 
245 1 3 |a To Boost Zero-Shot Generalization for Embodied Reasoning With Vision-Language Pre-Training 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, there exists an increased research interest in embodied artificial intelligence (EAI), which involves an agent learning to perform a specific task when dynamically interacting with the surrounding 3D environment. There into, a new challenge is that many unseen objects may appear due to the increased number of object categories in 3D scenes. It makes developing models with strong zero-shot generalization ability to new objects necessary. Existing work tries to achieve this goal by providing embodied agents with massive high-quality human annotations closely related to the task to be learned, while it is too costly in practice. Inspired by recent advances in pre-trained models in 2D visual tasks, we attempt to boost zero-shot generalization for embodied reasoning with vision-language pre-training that can encode common sense as general prior knowledge. To further improve its performance on a specific task, we rectify the pre-trained representation through masked scene graph modeling (MSGM) in a self-supervised manner, where the task-specific knowledge is learned from iterative message passing. Our method can improve a variety of representative embodied reasoning tasks by a large margin (e.g., over 5.0% w.r.t. answer accuracy on MP3D-EQA dataset that consists of many real-world scenes with a large number of new objects during testing), and achieve the new state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Zhang, Xingxing  |e verfasserin  |4 aut 
700 1 |a Zhang, Siyang  |e verfasserin  |4 aut 
700 1 |a Zhu, Jun  |e verfasserin  |4 aut 
700 1 |a Zhang, Bo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 18., Seite 5370-5381  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:18  |g pages:5370-5381 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3459800  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 18  |h 5370-5381