Dual Consensus Anchor Learning for Fast Multi-View Clustering

Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attenti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 11., Seite 5298-5311
1. Verfasser: Qin, Yalan (VerfasserIn)
Weitere Verfasser: Qin, Chuan, Zhang, Xinpeng, Feng, Guorui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377795895
003 DE-627
005 20240928232414.0
007 cr uuu---uuuuu
008 240919s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3459651  |2 doi 
028 5 2 |a pubmed24n1551.xml 
035 |a (DE-627)NLM377795895 
035 |a (NLM)39292595 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qin, Yalan  |e verfasserin  |4 aut 
245 1 0 |a Dual Consensus Anchor Learning for Fast Multi-View Clustering 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attentions to ensuring that the cluster structure correspondence between anchor graph and partition is built on multi-view datasets. Besides, they ignore to discover the anchor graph depicting the shared cluster assignment across views under the orthogonal constraint on actual bases in factorization. In this paper, we propose a novel Dual consensus Anchor Learning for Fast multi-view clustering (DALF) method, where the cluster structure correspondence between anchor graph and partition is guaranteed on multi-view datasets with large scales. It jointly learns anchors, constructs anchor graph and performs partition under a unified framework with the rank constraint imposed on the built Laplacian graph and the orthogonal constraint on the centroid representation. DALF simultaneously focuses on the cluster structure in the anchor graph and partition. The final cluster structure is simultaneously shown in the anchor graph and partition. We introduce the orthogonal constraint on the centroid representation in anchor graph factorization and the cluster assignment is directly constructed, where the cluster structure is shown in the partition. We present an iterative algorithm for solving the formulated problem. Extensive experiments demonstrate the effectiveness and efficiency of DALF on different multi-view datasets compared with other methods 
650 4 |a Journal Article 
700 1 |a Qin, Chuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Xinpeng  |e verfasserin  |4 aut 
700 1 |a Feng, Guorui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 11., Seite 5298-5311  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:11  |g pages:5298-5311 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3459651  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 11  |h 5298-5311