Textureless Deformable Object Tracking with Invisible Markers

Tracking and reconstructing deformable objects with little texture is challenging due to the lack of features. Here we introduce "invisible markers" for accurate and robust correspondence matching and tracking. Our markers are visible only under ultraviolet (UV) light. We build a novel ima...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 18. Sept.
1. Verfasser: Li, Xinyuan (VerfasserIn)
Weitere Verfasser: Guo, Yu, Tu, Yubei, Ji, Yu, Liu, Yanchen, Ye, Jinwei, Zheng, Changxi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM377795844
003 DE-627
005 20240919233204.0
007 cr uuu---uuuuu
008 240919s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3463422  |2 doi 
028 5 2 |a pubmed24n1539.xml 
035 |a (DE-627)NLM377795844 
035 |a (NLM)39292583 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xinyuan  |e verfasserin  |4 aut 
245 1 0 |a Textureless Deformable Object Tracking with Invisible Markers 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Tracking and reconstructing deformable objects with little texture is challenging due to the lack of features. Here we introduce "invisible markers" for accurate and robust correspondence matching and tracking. Our markers are visible only under ultraviolet (UV) light. We build a novel imaging system for capturing videos of deformed objects under their original untouched appearance (which may have little texture) and, simultaneously, with our markers. We develop an algorithm that first establishes accurate correspondences using video frames with markers, and then transfers them to the untouched views as ground-truth labels. In this way, we are able to generate high-quality labeled data for training learning-based algorithms. We contribute a large real-world dataset, DOT, for tracking deformable objects with little or no texture. Our dataset has about one million video frames of various types of deformable objects. We provide ground truth tracked correspondences in both 2D and 3D. We benchmark state-of-the-art methods on optical flow and deformable object reconstruction using our dataset, which poses great challenges. By training on DOT, their performance significantly improves, not only on our dataset, but also on other unseen data 
650 4 |a Journal Article 
700 1 |a Guo, Yu  |e verfasserin  |4 aut 
700 1 |a Tu, Yubei  |e verfasserin  |4 aut 
700 1 |a Ji, Yu  |e verfasserin  |4 aut 
700 1 |a Liu, Yanchen  |e verfasserin  |4 aut 
700 1 |a Ye, Jinwei  |e verfasserin  |4 aut 
700 1 |a Zheng, Changxi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 18. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:18  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3463422  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 18  |c 09