|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM377750840 |
003 |
DE-627 |
005 |
20240922000118.0 |
007 |
cr uuu---uuuuu |
008 |
240918s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3462938
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1542.xml
|
035 |
|
|
|a (DE-627)NLM377750840
|
035 |
|
|
|a (NLM)39288049
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Jianqiang
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part I
|b Geometry
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a A universal multiscale conditional coding framework, Unicorn, is proposed to compress the geometry and attribute of any given point cloud. Geometry compression is addressed in Part I of this paper, while attribute compression is discussed in Part II. We construct the multiscale sparse tensors of each voxelized point cloud frame and properly leverage lower-scale priors in the current and (previously processed) temporal reference frames to improve the conditional probability approximation or content-aware predictive reconstruction of geometry occupancy in compression. Unicorn is a versatile, learning-based solution capable of compressing static and dynamic point clouds with diverse source characteristics in both lossy and lossless modes. Following the same evaluation criteria, Unicorn significantly outperforms standard-compliant approaches like MPEG G-PCC, V-PCC, and other learning-based solutions, yielding state-of-the-art compression efficiency while presenting affordable complexity for practical implementations
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xue, Ruixiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Jiaxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Dandan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Zhan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g PP(2024) vom: 17. Sept.
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:PP
|g year:2024
|g day:17
|g month:09
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3462938
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2024
|b 17
|c 09
|