A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part I : Geometry

A universal multiscale conditional coding framework, Unicorn, is proposed to compress the geometry and attribute of any given point cloud. Geometry compression is addressed in Part I of this paper, while attribute compression is discussed in Part II. We construct the multiscale sparse tensors of eac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 17. Sept.
1. Verfasser: Wang, Jianqiang (VerfasserIn)
Weitere Verfasser: Xue, Ruixiang, Li, Jiaxin, Ding, Dandan, Lin, Yi, Ma, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377750840
003 DE-627
005 20240922000118.0
007 cr uuu---uuuuu
008 240918s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3462938  |2 doi 
028 5 2 |a pubmed24n1542.xml 
035 |a (DE-627)NLM377750840 
035 |a (NLM)39288049 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jianqiang  |e verfasserin  |4 aut 
245 1 2 |a A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part I  |b Geometry 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a A universal multiscale conditional coding framework, Unicorn, is proposed to compress the geometry and attribute of any given point cloud. Geometry compression is addressed in Part I of this paper, while attribute compression is discussed in Part II. We construct the multiscale sparse tensors of each voxelized point cloud frame and properly leverage lower-scale priors in the current and (previously processed) temporal reference frames to improve the conditional probability approximation or content-aware predictive reconstruction of geometry occupancy in compression. Unicorn is a versatile, learning-based solution capable of compressing static and dynamic point clouds with diverse source characteristics in both lossy and lossless modes. Following the same evaluation criteria, Unicorn significantly outperforms standard-compliant approaches like MPEG G-PCC, V-PCC, and other learning-based solutions, yielding state-of-the-art compression efficiency while presenting affordable complexity for practical implementations 
650 4 |a Journal Article 
700 1 |a Xue, Ruixiang  |e verfasserin  |4 aut 
700 1 |a Li, Jiaxin  |e verfasserin  |4 aut 
700 1 |a Ding, Dandan  |e verfasserin  |4 aut 
700 1 |a Lin, Yi  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 17. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:17  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3462938  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 17  |c 09