|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM377750778 |
003 |
DE-627 |
005 |
20240923235433.0 |
007 |
cr uuu---uuuuu |
008 |
240918s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3462945
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1546.xml
|
035 |
|
|
|a (DE-627)NLM377750778
|
035 |
|
|
|a (NLM)39288048
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Jianqiang
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part II
|b Attribute
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 23.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a A universal multiscale conditional coding framework, Unicorn, is proposed to code the geometry and attribute of any given point cloud. Attribute compression is discussed in Part II of this paper, while geometry compression is given in Part I of this paper. We first construct the multiscale sparse tensors of each voxelized point cloud attribute frame. Since attribute components exhibit very different intrinsic characteristics from the geometry element, e.g., 8-bit RGB color versus 1-bit occupancy, we process the attribute residual between lower-scale reconstruction and current-scale data. Similarly, we leverage spatially lower-scale priors in the current frame and (previously processed) temporal reference frame to improve the probability estimation of attribute intensity through conditional residual prediction in lossless mode or enhance the attribute reconstruction through progressive residual refinement in lossy mode for better performance. The proposed Unicorn is a versatile, learning-based solution capable of compressing a great variety of static and dynamic point clouds in both lossy and lossless modes. Following the same evaluation criteria, Unicorn significantly outperforms standard-compliant approaches like MPEG G-PCC, V-PCC, and other learning-based solutions, yielding state-of-the-art compression efficiency with affordable encoding/decoding runtime
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xue, Ruixiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Jiaxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Dandan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Zhan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g PP(2024) vom: 17. Sept.
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:PP
|g year:2024
|g day:17
|g month:09
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3462945
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2024
|b 17
|c 09
|