A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part II : Attribute

A universal multiscale conditional coding framework, Unicorn, is proposed to code the geometry and attribute of any given point cloud. Attribute compression is discussed in Part II of this paper, while geometry compression is given in Part I of this paper. We first construct the multiscale sparse te...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 17. Sept.
1. Verfasser: Wang, Jianqiang (VerfasserIn)
Weitere Verfasser: Xue, Ruixiang, Li, Jiaxin, Ding, Dandan, Lin, Yi, Ma, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377750778
003 DE-627
005 20240923235433.0
007 cr uuu---uuuuu
008 240918s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3462945  |2 doi 
028 5 2 |a pubmed24n1546.xml 
035 |a (DE-627)NLM377750778 
035 |a (NLM)39288048 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jianqiang  |e verfasserin  |4 aut 
245 1 2 |a A Versatile Point Cloud Compressor Using Universal Multiscale Conditional Coding - Part II  |b Attribute 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a A universal multiscale conditional coding framework, Unicorn, is proposed to code the geometry and attribute of any given point cloud. Attribute compression is discussed in Part II of this paper, while geometry compression is given in Part I of this paper. We first construct the multiscale sparse tensors of each voxelized point cloud attribute frame. Since attribute components exhibit very different intrinsic characteristics from the geometry element, e.g., 8-bit RGB color versus 1-bit occupancy, we process the attribute residual between lower-scale reconstruction and current-scale data. Similarly, we leverage spatially lower-scale priors in the current frame and (previously processed) temporal reference frame to improve the probability estimation of attribute intensity through conditional residual prediction in lossless mode or enhance the attribute reconstruction through progressive residual refinement in lossy mode for better performance. The proposed Unicorn is a versatile, learning-based solution capable of compressing a great variety of static and dynamic point clouds in both lossy and lossless modes. Following the same evaluation criteria, Unicorn significantly outperforms standard-compliant approaches like MPEG G-PCC, V-PCC, and other learning-based solutions, yielding state-of-the-art compression efficiency with affordable encoding/decoding runtime 
650 4 |a Journal Article 
700 1 |a Xue, Ruixiang  |e verfasserin  |4 aut 
700 1 |a Li, Jiaxin  |e verfasserin  |4 aut 
700 1 |a Ding, Dandan  |e verfasserin  |4 aut 
700 1 |a Lin, Yi  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 17. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:17  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3462945  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 17  |c 09