Prototype-guided Attention Distillation for Discriminative Person Search

Person search aims to localize a person of interest in a large image gallery captured by multiple, non-overlapping cameras. Prevalent unified methods have suffered from (1) noisy proposals with mis-detection and occlusion, and (2) large appearance variation within a class, which deteriorates the pro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 16. Sept.
1. Verfasser: Kim, Hanjae (VerfasserIn)
Weitere Verfasser: Lee, Jiyoung, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM377708151
003 DE-627
005 20240917234526.0
007 cr uuu---uuuuu
008 240917s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3461778  |2 doi 
028 5 2 |a pubmed24n1536.xml 
035 |a (DE-627)NLM377708151 
035 |a (NLM)39283791 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Hanjae  |e verfasserin  |4 aut 
245 1 0 |a Prototype-guided Attention Distillation for Discriminative Person Search 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Person search aims to localize a person of interest in a large image gallery captured by multiple, non-overlapping cameras. Prevalent unified methods have suffered from (1) noisy proposals with mis-detection and occlusion, and (2) large appearance variation within a class, which deteriorates the prototype-based metric learning. To address these problems, we introduce a Prototype-guided Attention Distillation, shortly PAD, which exploits a prototype (a typical representation of an identity) as a guidance to the attention module to consistently highlight identity-inherent regions across different poses. To utilize the knowledge encoded in prototypes for matching unseen IDs, PAD conducts attention distillation to guide student Re-ID queries by deeply mimicking attention maps from the prototype query. Additionally, to address large intra-class variation induced by pose or camera views, we extend PAD with multiple part prototypes representing consistent local regions across different instances. Furthermore, we exploit an adaptive momentum strategy for robust attention distillation in PAD to update more distinct prototypes. Extensive experiments conducted on CUHK-SYSU and PRW demonstrate the effectiveness of PAD, showcasing state-of-the-art performance. Moreover, our distilled attention surprisingly highlights distinguished multiple regions for person search 
650 4 |a Journal Article 
700 1 |a Lee, Jiyoung  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 16. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:16  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3461778  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 16  |c 09