Adaptive Log-Euclidean Metrics for SPD Matrix Learning

Symmetric Positive Definite (SPD) matrices have received wide attention in machine learning due to their intrinsic capacity to encode underlying structural correlation in data. Many successful Riemannian metrics have been proposed to reflect the non-Euclidean geometry of SPD manifolds. However, most...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 19., Seite 5194-5205
1. Verfasser: Chen, Ziheng (VerfasserIn)
Weitere Verfasser: Song, Yue, Xu, Tianyang, Huang, Zhiwu, Wu, Xiao-Jun, Sebe, Nicu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM37770802X
003 DE-627
005 20240920232650.0
007 cr uuu---uuuuu
008 240917s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3451930  |2 doi 
028 5 2 |a pubmed24n1540.xml 
035 |a (DE-627)NLM37770802X 
035 |a (NLM)39283773 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Ziheng  |e verfasserin  |4 aut 
245 1 0 |a Adaptive Log-Euclidean Metrics for SPD Matrix Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Symmetric Positive Definite (SPD) matrices have received wide attention in machine learning due to their intrinsic capacity to encode underlying structural correlation in data. Many successful Riemannian metrics have been proposed to reflect the non-Euclidean geometry of SPD manifolds. However, most existing metric tensors are fixed, which might lead to sub-optimal performance for SPD matrix learning, especially for deep SPD neural networks. To remedy this limitation, we leverage the commonly encountered pullback techniques and propose Adaptive Log-Euclidean Metrics (ALEMs), which extend the widely used Log-Euclidean Metric (LEM). Compared with the previous Riemannian metrics, our metrics contain learnable parameters, which can better adapt to the complex dynamics of Riemannian neural networks with minor extra computations. We also present a complete theoretical analysis to support our ALEMs, including algebraic and Riemannian properties. The experimental and theoretical results demonstrate the merit of the proposed metrics in improving the performance of SPD neural networks. The efficacy of our metrics is further showcased on a set of recently developed Riemannian building blocks, including Riemannian batch normalization, Riemannian Residual blocks, and Riemannian classifiers 
650 4 |a Journal Article 
700 1 |a Song, Yue  |e verfasserin  |4 aut 
700 1 |a Xu, Tianyang  |e verfasserin  |4 aut 
700 1 |a Huang, Zhiwu  |e verfasserin  |4 aut 
700 1 |a Wu, Xiao-Jun  |e verfasserin  |4 aut 
700 1 |a Sebe, Nicu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 19., Seite 5194-5205  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:19  |g pages:5194-5205 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3451930  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 19  |h 5194-5205