Identifying clinically meaningful subgroups following open reduction and internal fixation for proximal humerus fractures : a risk stratification analysis for mortality and 30-day complications using machine learning

© 2024 The Author(s).

Bibliographische Detailangaben
Veröffentlicht in:JSES international. - 2020. - 8(2024), 5 vom: 28. Sept., Seite 932-940
1. Verfasser: Agarwalla, Avinesh (VerfasserIn)
Weitere Verfasser: Lu, Yining, Reinholz, Anna K, Marigi, Erick M, Liu, Joseph N, Sanchez-Sotelo, Joaquin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:JSES international
Schlagworte:Journal Article Complications Machine learning Open reduction internal fixation Proximal humerus fracture Readmission Reoperation Risk factors Risk stratification
LEADER 01000caa a22002652 4500
001 NLM377671819
003 DE-627
005 20240917234104.0
007 cr uuu---uuuuu
008 240916s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jseint.2024.04.015  |2 doi 
028 5 2 |a pubmed24n1536.xml 
035 |a (DE-627)NLM377671819 
035 |a (NLM)39280153 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Agarwalla, Avinesh  |e verfasserin  |4 aut 
245 1 0 |a Identifying clinically meaningful subgroups following open reduction and internal fixation for proximal humerus fractures  |b a risk stratification analysis for mortality and 30-day complications using machine learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.09.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Author(s). 
520 |a Background: Identification of prognostic variables for poor outcomes following open reduction internal fixation (ORIF) of displaced proximal humerus fractures have been limited to singular, linear factors and subjective clinical intuition. Machine learning (ML) has the capability to objectively segregate patients based on various outcome metrics and reports the connectivity of variables resulting in the optimal outcome. Therefore, the purpose of this study was to (1) use unsupervised ML to stratify patients to high-risk and low-risk clusters based on postoperative events, (2) compare the ML clusters to the American Society of Anesthesiologists (ASA) classification for assessment of risk, and (3) determine the variables that were associated with high-risk patients after proximal humerus ORIF 
520 |a Methods: The American College of Surgeons-National Surgical Quality Improvement Program database was retrospectively queried for patients undergoing ORIF for proximal humerus fractures between 2005 and 2018. Four unsupervised ML clustering algorithms were evaluated to partition subjects into "high-risk" and "low-risk" subgroups based on combinations of observed outcomes. Demographic, clinical, and treatment variables were compared between these groups using descriptive statistics. A supervised ML algorithm was generated to identify patients who were likely to be "high risk" and were compared to ASA classification. A game-theory-based explanation algorithm was used to illustrate predictors of "high-risk" status 
520 |a Results: Overall, 4670 patients were included, of which 202 were partitioned into the "high-risk" cluster, while the remaining (4468 patients) were partitioned into the "low-risk" cluster. Patients in the "high-risk" cluster demonstrated significantly increased rates of the following complications: 30-day mortality, 30-day readmission rates, 30-day reoperation rates, nonroutine discharge rates, length of stay, and rates of all surgical and medical complications assessed with the exception of urinary tract infection (P < .001). The best performing supervised machine learning algorithm for preoperatively identifying "high-risk" patients was the extreme-gradient boost (XGBoost), which achieved an area under the receiver operating characteristics curve of 76.8%, while ASA classification had an area under the receiver operating characteristics curve of 61.7%. Shapley values identified the following predictors of "high-risk" status: greater body mass index, increasing age, ASA class 3, increased operative time, male gender, diabetes, and smoking history 
520 |a Conclusion: Unsupervised ML identified that "high-risk" patients have a higher risk of complications (8.9%) than "low-risk" groups (0.4%) with respect to 30-day complication rate. A supervised ML model selected greater body mass index, increasing age, ASA class 3, increased operative time, male gender, diabetes, and smoking history to effectively predict "high-risk" patients 
650 4 |a Journal Article 
650 4 |a Complications 
650 4 |a Machine learning 
650 4 |a Open reduction internal fixation 
650 4 |a Proximal humerus fracture 
650 4 |a Readmission 
650 4 |a Reoperation 
650 4 |a Risk factors 
650 4 |a Risk stratification 
700 1 |a Lu, Yining  |e verfasserin  |4 aut 
700 1 |a Reinholz, Anna K  |e verfasserin  |4 aut 
700 1 |a Marigi, Erick M  |e verfasserin  |4 aut 
700 1 |a Liu, Joseph N  |e verfasserin  |4 aut 
700 1 |a Sanchez-Sotelo, Joaquin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t JSES international  |d 2020  |g 8(2024), 5 vom: 28. Sept., Seite 932-940  |w (DE-627)NLM307818438  |x 2666-6383  |7 nnns 
773 1 8 |g volume:8  |g year:2024  |g number:5  |g day:28  |g month:09  |g pages:932-940 
856 4 0 |u http://dx.doi.org/10.1016/j.jseint.2024.04.015  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_50 
912 |a GBV_ILN_65 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 2024  |e 5  |b 28  |c 09  |h 932-940