AIM/NBO Analysis of the Geminal Coupling Constants in the Stabilization of A-Type Dimeric Proanthocyanidin : Angular Dependence

© 2024 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - (2024) vom: 15. Sept.
1. Verfasser: Lobayan, Rosana M (VerfasserIn)
Weitere Verfasser: Provasi, Patricio F, Pomilio, Alicia B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article conformer identification indirect nuclear spin‐spin coupling constants inductive effect mesomeric effect natural bond orbitals proanthocyanidin topological properties
Beschreibung
Zusammenfassung:© 2024 John Wiley & Sons Ltd.
The angular dependence of the indirect short-range spin-spin coupling constants (SSCC), the geminal J ( C 3 , C 1 ' ) $$ J\left({C}_3,{C}_{1^{\prime }}\right) $$ , J ( O 1 , O ) $$ J\left({O}_1,O\right) $$ , and J ( O , C 1 ' ) $$ J\left(O,{C}_{1^{\prime }}\right) $$ in A-type dimeric proanthocyanidin, was investigated using density functional theory. We studied the rotation of ring B around the C 2 - C 1 ' $$ {C}_2\hbox{--} {C}_{1^{\prime }} $$ bond. Therefore, we calculated hyperconjugative charge transfers and bond polarizations within the natural bond orbital (NBO) approach, performing a topological study based on Bader's theory, AIM (atoms in molecules), and analyzing the angular dependence of AIM/NBO parameters. The results describe a relationship between the geminal coupling that changes with angular variation and NBO charge transfers to the bonds involved in the coupling pathways that can explain the behavior of the former property. Based on AIM/NBO data, inductive and mesomeric effects were described and quantified, showing a clear correlation with the stabilization of the structure, demonstrating a resonance-assisted inductive effect. We also set out strong hyperconjugative interactions (anomeric effect) involving nonbonding electron pairs of oxygen atoms. This analysis of coupling constants supports previous models by other authors and shows the application in this particular case. Moreover, the SSCCs studied herein are used for identifying stable structures and conformational search analysis of flavonoids. Finally, our results show the relationship between SSCCs and the structure stabilization and charge delocalization effects
Beschreibung:Date Revised 16.09.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1097-458X
DOI:10.1002/mrc.5479