Mine Your Own Anatomy : Revisiting Medical Image Segmentation With Extremely Limited Labels

Recent studies on contrastive learning have achieved remarkable performance solely by leveraging few labels in the context of medical image segmentation. Existing methods mainly focus on instance discrimination and invariant mapping (i.e., pulling positive samples closer and negative samples apart i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 13. Sept.
1. Verfasser: You, Chenyu (VerfasserIn)
Weitere Verfasser: Dai, Weicheng, Liu, Fenglin, Min, Yifei, Dvornek, Nicha C, Li, Xiaoxiao, Clifton, David A, Staib, Lawrence, Duncan, James S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM377562726
003 DE-627
005 20250306155137.0
007 cr uuu---uuuuu
008 240914s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3461321  |2 doi 
028 5 2 |a pubmed25n1257.xml 
035 |a (DE-627)NLM377562726 
035 |a (NLM)39269798 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a You, Chenyu  |e verfasserin  |4 aut 
245 1 0 |a Mine Your Own Anatomy  |b Revisiting Medical Image Segmentation With Extremely Limited Labels 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Recent studies on contrastive learning have achieved remarkable performance solely by leveraging few labels in the context of medical image segmentation. Existing methods mainly focus on instance discrimination and invariant mapping (i.e., pulling positive samples closer and negative samples apart in the feature space). However, they face three common pitfalls: (1) tailness: medical image data usually follows an implicit long-tail class distribution. Blindly leveraging all pixels in training hence can lead to the data imbalance issues, and cause deteriorated performance; (2) consistency: it remains unclear whether a segmentation model has learned meaningful and yet consistent anatomical features due to the intra-class variations between different anatomical features; and (3) diversity: the intra-slice correlations within the entire dataset have received significantly less attention. This motivates us to seek a principled approach for strategically making use of the dataset itself to discover similar yet distinct samples from different anatomical views. In this paper, we introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owNAnatomy (MONA), and make three contributions. First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features, mainly due to lacking the supervision signal. We show two simple solutions towards learning invariances-through the use of stronger data augmentations and nearest neighbors. Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features in an unsupervised manner. Lastly, we both empirically and theoretically, demonstrate the efficacy of our MONA on three benchmark datasets with different labeled settings, achieving new state-of-the-art under different labeled semi-supervised settings. MONA makes minimal assumptions on domain expertise, and hence constitutes a practical and versatile solution in medical image analysis. We provide the PyTorch-like pseudo-code in supplementary 
650 4 |a Journal Article 
700 1 |a Dai, Weicheng  |e verfasserin  |4 aut 
700 1 |a Liu, Fenglin  |e verfasserin  |4 aut 
700 1 |a Min, Yifei  |e verfasserin  |4 aut 
700 1 |a Dvornek, Nicha C  |e verfasserin  |4 aut 
700 1 |a Li, Xiaoxiao  |e verfasserin  |4 aut 
700 1 |a Clifton, David A  |e verfasserin  |4 aut 
700 1 |a Staib, Lawrence  |e verfasserin  |4 aut 
700 1 |a Duncan, James S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 13. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:13  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3461321  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 13  |c 09