|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM377543381 |
003 |
DE-627 |
005 |
20241115232433.0 |
007 |
cr uuu---uuuuu |
008 |
240914s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2023.2280879
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1601.xml
|
035 |
|
|
|a (DE-627)NLM377543381
|
035 |
|
|
|a (NLM)39267706
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Paul, Nobin Chandra
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a GWR-assisted integrated estimator of finite population total under two-phase sampling
|b a model-assisted approach
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 15.11.2024
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a In survey sampling, auxiliary information is used to precisely estimate the finite population parameters. There are several approaches available in the literature that provide a practical method for incorporating auxiliary information during the estimation stage. In order to effectively utilize the auxiliary information, a geographically weighted regression (GWR) model-assisted integrated estimator of finite population total under a two-phase sampling design has been proposed in this article. Spatial simulation studies have been conducted to empirically assess the statistical properties of the proposed estimator. In the presence of spatial non-stationarity, empirical findings reveal that the proposed estimator outperforms all existing estimators such as two-phase HT, ratio, and regression estimators, demonstrating the importance of spatial information in survey sampling
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Data integration
|
650 |
|
4 |
|a geographically weighted regression
|
650 |
|
4 |
|a model-assisted approach
|
650 |
|
4 |
|a spatial non-stationarity
|
650 |
|
4 |
|a two-phase regression
|
700 |
1 |
|
|a Rai, Anil
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ahmad, Tauqueer
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Biswas, Ankur
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sahoo, Prachi Misra
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 51(2024), 12 vom: 12., Seite 2326-2343
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnns
|
773 |
1 |
8 |
|g volume:51
|g year:2024
|g number:12
|g day:12
|g pages:2326-2343
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2023.2280879
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 51
|j 2024
|e 12
|b 12
|h 2326-2343
|