Low-Dimensional Gradient Helps Out-of-Distribution Detection

Detecting out-of-distribution (OOD) samples is essential for ensuring the reliability of deep neural networks (DNNs) in real-world scenarios. While previous research has predominantly investigated the disparity between in-distribution (ID) and OOD data through forward information analysis, the discr...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 12. Dez., Seite 11378-11391
Auteur principal: Wu, Yingwen (Auteur)
Autres auteurs: Li, Tao, Cheng, Xinwen, Yang, Jie, Huang, Xiaolin
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article