Low-Dimensional Gradient Helps Out-of-Distribution Detection
Detecting out-of-distribution (OOD) samples is essential for ensuring the reliability of deep neural networks (DNNs) in real-world scenarios. While previous research has predominantly investigated the disparity between in-distribution (ID) and OOD data through forward information analysis, the discr...
Description complète
Détails bibliographiques
| Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 12. Dez., Seite 11378-11391
|
| Auteur principal: |
Wu, Yingwen
(Auteur) |
| Autres auteurs: |
Li, Tao,
Cheng, Xinwen,
Yang, Jie,
Huang, Xiaolin |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2024
|
| Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
| Sujets: | Journal Article |