Investigating the Use of Traveltime and Reflection Tomography for Deep Learning-Based Sound-Speed Estimation in Ultrasound Computed Tomography

Ultrasound computed tomography (USCT) quantifies acoustic tissue properties such as the speed-of-sound (SOS). Although full-waveform inversion (FWI) is an effective method for accurate SOS reconstruction, it can be computationally challenging for large-scale problems. Deep learning-based image-to-im...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - PP(2024) vom: 12. Sept.
1. Verfasser: Jeong, Gangwon (VerfasserIn)
Weitere Verfasser: Li, Fu, Mitcham, Trevor M, Villa, Umberto, Duric, Nebosa, Anastasio, Mark A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377518212
003 DE-627
005 20240917233851.0
007 cr uuu---uuuuu
008 240913s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2024.3459391  |2 doi 
028 5 2 |a pubmed24n1536.xml 
035 |a (DE-627)NLM377518212 
035 |a (NLM)39264782 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jeong, Gangwon  |e verfasserin  |4 aut 
245 1 0 |a Investigating the Use of Traveltime and Reflection Tomography for Deep Learning-Based Sound-Speed Estimation in Ultrasound Computed Tomography 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Ultrasound computed tomography (USCT) quantifies acoustic tissue properties such as the speed-of-sound (SOS). Although full-waveform inversion (FWI) is an effective method for accurate SOS reconstruction, it can be computationally challenging for large-scale problems. Deep learning-based image-to-image learned reconstruction (IILR) methods can offer computationally efficient alternatives. This study investigates the impact of the chosen input modalities on IILR methods for high-resolution SOS reconstruction in USCT. The selected modalities are traveltime tomography (TT) and reflection tomography (RT), which produce a low-resolution SOS map and a reflectivity map, respectively. These modalities have been chosen for their lower computational cost relative to FWI and their capacity to provide complementary information: TT offers a direct SOS measure, while RT reveals tissue boundary information. Systematic analyses were facilitated by employing a virtual USCT imaging system with anatomically realistic numerical breast phantoms. Within this testbed, a supervised convolutional neural network (CNN) was trained to map dual-channel (TT and RT images) to a high-resolution SOS map. Single-input CNNs were trained separately using inputs from each modality alone (TT or RT) for comparison. The accuracy of the methods was systematically assessed using normalized root mean squared error (NRMSE), structural similarity index measure (SSIM), and peak signal-to-noise ratio (PSNR). For tumor detection performance, receiver operating characteristic analysis was employed. The dual-channel IILR method was also tested on clinical human breast data. Ensemble average of the NRMSE, SSIM, and PSNR evaluated on this clinical dataset were 0.2355, 0.8845, and 28.33 dB, respectively 
650 4 |a Journal Article 
700 1 |a Li, Fu  |e verfasserin  |4 aut 
700 1 |a Mitcham, Trevor M  |e verfasserin  |4 aut 
700 1 |a Villa, Umberto  |e verfasserin  |4 aut 
700 1 |a Duric, Nebosa  |e verfasserin  |4 aut 
700 1 |a Anastasio, Mark A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g PP(2024) vom: 12. Sept.  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:12  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2024.3459391  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 12  |c 09