HINTs : Sensemaking on large collections of documents with Hypergraph visualization and INTelligent agents

Sensemaking on a large collection of documents (corpus) is a challenging task often found in fields such as market research, legal studies, intelligence analysis, political science, or computational linguistics. Previous works approach this problem from topic- and entity-based perspectives, but the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 12. Sept.
1. Verfasser: Lee, Sam Yu-Te (VerfasserIn)
Weitere Verfasser: Ma, Kwan-Liu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377518182
003 DE-627
005 20240916232905.0
007 cr uuu---uuuuu
008 240913s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3459961  |2 doi 
028 5 2 |a pubmed24n1535.xml 
035 |a (DE-627)NLM377518182 
035 |a (NLM)39264779 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Sam Yu-Te  |e verfasserin  |4 aut 
245 1 0 |a HINTs  |b Sensemaking on large collections of documents with Hypergraph visualization and INTelligent agents 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Sensemaking on a large collection of documents (corpus) is a challenging task often found in fields such as market research, legal studies, intelligence analysis, political science, or computational linguistics. Previous works approach this problem from topic- and entity-based perspectives, but the capability of the underlying NLP model limits their effectiveness. Recent advances in prompting with LLMs present opportunities to enhance such approaches with higher accuracy and customizability. However, poorly designed prompts and visualizations could mislead users into falsely interpreting the visualizations and hinder the system's trustworthiness. In this paper, we address this issue by taking into account the user analysis tasks and visualization goals in the prompt-based data extraction stage, thereby extending the concept of Model Alignment. We present HINTs, a VA system for supporting sensemaking on large collections of documents, combining previous entity-based and topic-based approaches. The visualization pipeline of HINTs consists of three stages. First, entities and topics are extracted from the corpus with prompts. Then, the result is modeled as a hypergraph and hierarchically clustered. Finally, an enhanced space-filling curve layout is applied to visualize the hypergraph for interactive exploration. The system further integrates an LLM-based intelligent chatbot agent in the interface to facilitate the sensemaking of interested documents. To demonstrate the generalizability and effectiveness of the HINTs system, we present two case studies on different domains and a comparative user study. We report our insights on the behavior patterns and challenges when intelligent agents are used to facilitate sensemaking. We find that while intelligent agents can address many challenges in sensemaking, the visual hints that visualizations provide are still necessary. We discuss limitations and future work for combining interactive visualization and LLMs more profoundly to better support corpus analysis 
650 4 |a Journal Article 
700 1 |a Ma, Kwan-Liu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 12. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:12  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3459961  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 12  |c 09