Disentangled Sample Guidance Learning for Unsupervised Person Re-Identification

Unsupervised person re-identification (Re-ID) is challenging due to the lack of ground truth labels. Most existing methods employ iterative clustering to generate pseudo labels for unlabeled training data to guide the learning process. However, how to select samples that are both associated with hig...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 12., Seite 5144-5158
1. Verfasser: Ji, Haoxuanye (VerfasserIn)
Weitere Verfasser: Wang, Le, Zhou, Sanping, Tang, Wei, Hua, Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM377518093
003 DE-627
005 20250306154446.0
007 cr uuu---uuuuu
008 240913s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3456008  |2 doi 
028 5 2 |a pubmed25n1257.xml 
035 |a (DE-627)NLM377518093 
035 |a (NLM)39264769 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ji, Haoxuanye  |e verfasserin  |4 aut 
245 1 0 |a Disentangled Sample Guidance Learning for Unsupervised Person Re-Identification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised person re-identification (Re-ID) is challenging due to the lack of ground truth labels. Most existing methods employ iterative clustering to generate pseudo labels for unlabeled training data to guide the learning process. However, how to select samples that are both associated with high-confidence pseudo labels and hard (discriminative) enough remains a critical problem. To address this issue, a disentangled sample guidance learning (DSGL) method is proposed for unsupervised Re-ID. The method consists of disentangled sample mining (DSM) and discriminative feature learning (DFL). DSM disentangles (unlabeled) person images into identity-relevant and identity-irrelevant factors, which are used to construct disentangled positive/negative groups that contain discriminative enough information. DFL incorporates the mined disentangled sample groups into model training by a surrogate disentangled learning loss and a disentangled second-order similarity regularization, to help the model better distinguish the characteristics of different persons. By using the DSGL training strategy, the mAP on Market-1501 and MSMT17 increases by 6.6% and 10.1% when applying the ResNet50 framework, and by 0.6% and 6.9% with the vision transformer (VIT) framework, respectively, validating the effectiveness of the DSGL method. Moreover, DSGL surpasses previous state-of-the-art methods by achieving higher Top-1 accuracy and mAP on the Market-1501, MSMT17, PersonX, and VeRi-776 datasets. The source code for this paper is available at https://github.com/jihaoxuanye/DiseSGL 
650 4 |a Journal Article 
700 1 |a Wang, Le  |e verfasserin  |4 aut 
700 1 |a Zhou, Sanping  |e verfasserin  |4 aut 
700 1 |a Tang, Wei  |e verfasserin  |4 aut 
700 1 |a Hua, Gang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 12., Seite 5144-5158  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:12  |g pages:5144-5158 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3456008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 12  |h 5144-5158