Machine learning constructs the microstructure and mechanical properties that accelerate the development of CFRP pyrolysis for carbon-fiber recycling

Copyright © 2024 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 190(2024) vom: 10. Sept., Seite 12-23
1. Verfasser: Dai, Lingwen (VerfasserIn)
Weitere Verfasser: Hu, Xiaomin, Zhao, Congcong, Zhou, Huixin, Zhang, Zhiji, Wang, Yichao, Ma, Shuai, Liu, Xiaozhen, Li, Xumin, Shu, Xinqian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Machine learning Pyrolysis Recycled carbon fiber Recycling
LEADER 01000naa a22002652 4500
001 NLM377471380
003 DE-627
005 20240912233502.0
007 cr uuu---uuuuu
008 240912s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2024.09.002  |2 doi 
028 5 2 |a pubmed24n1531.xml 
035 |a (DE-627)NLM377471380 
035 |a (NLM)39260097 
035 |a (PII)S0956-053X(24)00484-7 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dai, Lingwen  |e verfasserin  |4 aut 
245 1 0 |a Machine learning constructs the microstructure and mechanical properties that accelerate the development of CFRP pyrolysis for carbon-fiber recycling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Copyright © 2024 Elsevier Ltd. All rights reserved. 
520 |a The increasing use of carbon-fiber-reinforced plastic (CFRP) has led to its post-end-of-life recycling becoming a research focus. Herein, we studied the macroscopic and microscopic characteristics of recycled carbon fiber (rCF) during CFRP pyrolysis by innovatively combining typical experiments with machine learning. We first comprehensively studied the effects of treatment time and temperature on the mechanical properties, graphitization degree, lattice parameters, and surface O content of rCF following pyrolysis and oxidation. The surface resin residue was found to largely affect the degradation of the mechanical properties of the rCF, whereas oxidation treatment effectively removes this residue and is the critical recycling condition that determines its mechanical properties. In contrast, pyrolysis affected graphitization in a more-pronounced manner. More importantly, a random forest machine-learning model (RF model) that optimizes using a particle swarm algorithm was developed based on 336 data points and used to determine the mechanical properties and microstructural parameters of rCF when treated under various pyrolysis and oxidation conditions. The constructed model was effectively used to forecast the recovery conditions for various rCF target requirements, with the predictions for different recycling conditions found to be in good agreement with the experimental data 
650 4 |a Journal Article 
650 4 |a Machine learning 
650 4 |a Pyrolysis 
650 4 |a Recycled carbon fiber 
650 4 |a Recycling 
700 1 |a Hu, Xiaomin  |e verfasserin  |4 aut 
700 1 |a Zhao, Congcong  |e verfasserin  |4 aut 
700 1 |a Zhou, Huixin  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhiji  |e verfasserin  |4 aut 
700 1 |a Wang, Yichao  |e verfasserin  |4 aut 
700 1 |a Ma, Shuai  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaozhen  |e verfasserin  |4 aut 
700 1 |a Li, Xumin  |e verfasserin  |4 aut 
700 1 |a Shu, Xinqian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 190(2024) vom: 10. Sept., Seite 12-23  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:190  |g year:2024  |g day:10  |g month:09  |g pages:12-23 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2024.09.002  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 190  |j 2024  |b 10  |c 09  |h 12-23