Evaluating and extending speedup techniques for optimal crossing minimization in layered graph drawings

A layered graph is an important category of graph in which every node is assigned to a layer, and layers are drawn as parallel or radial lines. They are commonly used to display temporal data or hierarchical graphs. Previous research has demonstrated that minimizing edge crossings is the most import...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 11. Sept.
1. Verfasser: Wilson, Connor (VerfasserIn)
Weitere Verfasser: Puerta, Eduardo, Crnovrsanin, Tarik, Bartolomeo, Sara Di, Dunne, Cody
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377466743
003 DE-627
005 20240918232811.0
007 cr uuu---uuuuu
008 240912s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3456349  |2 doi 
028 5 2 |a pubmed24n1538.xml 
035 |a (DE-627)NLM377466743 
035 |a (NLM)39259630 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wilson, Connor  |e verfasserin  |4 aut 
245 1 0 |a Evaluating and extending speedup techniques for optimal crossing minimization in layered graph drawings 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a A layered graph is an important category of graph in which every node is assigned to a layer, and layers are drawn as parallel or radial lines. They are commonly used to display temporal data or hierarchical graphs. Previous research has demonstrated that minimizing edge crossings is the most important criterion to consider when looking to improve the readability of such graphs. While heuristic approaches exist for crossing minimization, we are interested in optimal approaches to the problem that prioritize human readability over computational scalability. We aim to improve the usefulness and applicability of such optimal methods by understanding and improving their scalability to larger graphs. This paper categorizes and evaluates the state-of-the-art linear programming formulations for exact crossing minimization and describes nine new and existing techniques that could plausibly accelerate the optimization algorithm. Through a computational evaluation, we explore each technique's effect on calculation time and how the techniques assist or inhibit one another, allowing researchers and practitioners to adapt them to the characteristics of their graphs. Our best-performing techniques yielded a median improvement of 2.5-17× depending on the solver used, giving us the capability to create optimal layouts faster and for larger graphs. We provide an open-source implementation of our methodology in Python, where users can pick which combination of techniques to enable according to their use case. A free copy of this paper and all supplemental materials, datasets used, and source code are available at https://osf.io/5vq79 
650 4 |a Journal Article 
700 1 |a Puerta, Eduardo  |e verfasserin  |4 aut 
700 1 |a Crnovrsanin, Tarik  |e verfasserin  |4 aut 
700 1 |a Bartolomeo, Sara Di  |e verfasserin  |4 aut 
700 1 |a Dunne, Cody  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 11. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:11  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3456349  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 11  |c 09