VADIS : A Visual Analytics Pipeline for Dynamic Document Representation and Information-Seeking

In the biomedical domain, visualizing the document embeddings of an extensive corpus has been widely used in informationseeking tasks. However, three key challenges with existing visualizations make it difficult for clinicians to find information efficiently. First, the document embeddings used in t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 11. Sept.
1. Verfasser: Qiu, Rui (VerfasserIn)
Weitere Verfasser: Tu, Yamei, Yen, Po-Yin, Shen, Han-Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377466719
003 DE-627
005 20240916232858.0
007 cr uuu---uuuuu
008 240912s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3456339  |2 doi 
028 5 2 |a pubmed24n1535.xml 
035 |a (DE-627)NLM377466719 
035 |a (NLM)39259627 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qiu, Rui  |e verfasserin  |4 aut 
245 1 0 |a VADIS  |b A Visual Analytics Pipeline for Dynamic Document Representation and Information-Seeking 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In the biomedical domain, visualizing the document embeddings of an extensive corpus has been widely used in informationseeking tasks. However, three key challenges with existing visualizations make it difficult for clinicians to find information efficiently. First, the document embeddings used in these visualizations are generated statically by pretrained language models, which cannot adapt to the user's evolving interest. Second, existing document visualization techniques cannot effectively display how the documents are relevant to users' interest, making it difficult for users to identify the most pertinent information. Third, existing embedding generation and visualization processes suffer from a lack of interpretability, making it difficult to understand, trust and use the result for decision-making. In this paper, we present a novel visual analytics pipeline for user-driven document representation and iterative information seeking (VADIS). VADIS introduces a prompt-based attention model (PAM) that generates dynamic document embedding and document relevance adjusted to the user's query. To effectively visualize these two pieces of information, we design a new document map that leverages a circular grid layout to display documents based on both their relevance to the query and the semantic similarity. Additionally, to improve the interpretability, we introduce a corpus-level attention visualization method to improve the user's understanding of the model focus and to enable the users to identify potential oversight. This visualization, in turn, empowers users to refine, update and introduce new queries, thereby facilitating a dynamic and iterative information-seeking experience. We evaluated VADIS quantitatively and qualitatively on a real-world dataset of biomedical research papers to demonstrate its effectiveness 
650 4 |a Journal Article 
700 1 |a Tu, Yamei  |e verfasserin  |4 aut 
700 1 |a Yen, Po-Yin  |e verfasserin  |4 aut 
700 1 |a Shen, Han-Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 11. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:11  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3456339  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 11  |c 09