Learning From Human Attention for Attribute-Assisted Visual Recognition

With prior knowledge of seen objects, humans have a remarkable ability to recognize novel objects using shared and distinct local attributes. This is significant for the challenging tasks of zero-shot learning (ZSL) and fine-grained visual classification (FGVC), where the discriminative attributes o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 23. Nov., Seite 11152-11167
1. Verfasser: Bai, Xiao (VerfasserIn)
Weitere Verfasser: Zhang, Pengcheng, Yu, Xiaohan, Zheng, Jin, Hancock, Edwin R, Zhou, Jun, Gu, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377466697
003 DE-627
005 20241112232151.0
007 cr uuu---uuuuu
008 240912s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3458921  |2 doi 
028 5 2 |a pubmed24n1598.xml 
035 |a (DE-627)NLM377466697 
035 |a (NLM)39259624 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Xiao  |e verfasserin  |4 aut 
245 1 0 |a Learning From Human Attention for Attribute-Assisted Visual Recognition 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.11.2024 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a With prior knowledge of seen objects, humans have a remarkable ability to recognize novel objects using shared and distinct local attributes. This is significant for the challenging tasks of zero-shot learning (ZSL) and fine-grained visual classification (FGVC), where the discriminative attributes of objects have played an important role. Inspired by human visual attention, neural networks have widely exploited the attention mechanism to learn the locally discriminative attributes for challenging tasks. Though greatly promoted the development of these fields, existing works mainly focus on learning the region embeddings of different attribute features and neglect the importance of discriminative attribute localization. It is also unclear whether the learned attention truly matches the real human attention. To tackle this problem, this paper proposes to employ real human gaze data for visual recognition networks to learn from human attention. Specifically, we design a unified Attribute Attention Network (A 2Net) that learns from human attention for both ZSL and FGVC tasks. The overall model consists of an attribute attention branch and a baseline classification network. On top of the image feature maps provided by the baseline classification network, the attribute attention branch employs attribute prototypes to produce attribute attention maps and attribute features. The attribute attention maps are converted to gaze-like attentions to be aligned with real human gaze attention. To guarantee the effectiveness of attribute feature learning, we further align the extracted attribute features with attribute-defined class embeddings. To facilitate learning from human gaze attention for the visual recognition problems, we design a bird classification game to collect real human gaze data using the CUB dataset via an eye-tracker device. Experiments on ZSL and FGVC tasks without/with real human gaze data validate the benefits and accuracy of our proposed model. This work supports the promising benefits of collecting human gaze datasets and automatic gaze estimation algorithms learning from human attention for high-level computer vision tasks 
650 4 |a Journal Article 
700 1 |a Zhang, Pengcheng  |e verfasserin  |4 aut 
700 1 |a Yu, Xiaohan  |e verfasserin  |4 aut 
700 1 |a Zheng, Jin  |e verfasserin  |4 aut 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
700 1 |a Zhou, Jun  |e verfasserin  |4 aut 
700 1 |a Gu, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 23. Nov., Seite 11152-11167  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:23  |g month:11  |g pages:11152-11167 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3458921  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 23  |c 11  |h 11152-11167