One-Stage Anchor-Free Online Multiple Target Tracking With Deformable Local Attention and Task-Aware Prediction

The tracking-by-detection paradigm currently dominates multiple target tracking algorithms. It usually includes three tasks: target detection, appearance feature embedding, and data association. Carrying out these three tasks successively usually leads to lower tracking efficiency. In this paper, we...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 10. Dez., Seite 11446-11463
1. Verfasser: Hu, Weiming (VerfasserIn)
Weitere Verfasser: Wang, Shaoru, Zhou, Zongwei, Gao, Jin, Li, Yangxi, Maybank, Stephen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM377422304
003 DE-627
005 20250306153132.0
007 cr uuu---uuuuu
008 240911s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3457886  |2 doi 
028 5 2 |a pubmed25n1257.xml 
035 |a (DE-627)NLM377422304 
035 |a (NLM)39255179 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Weiming  |e verfasserin  |4 aut 
245 1 0 |a One-Stage Anchor-Free Online Multiple Target Tracking With Deformable Local Attention and Task-Aware Prediction 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The tracking-by-detection paradigm currently dominates multiple target tracking algorithms. It usually includes three tasks: target detection, appearance feature embedding, and data association. Carrying out these three tasks successively usually leads to lower tracking efficiency. In this paper, we propose a one-stage anchor-free multiple task learning framework which carries out target detection and appearance feature embedding in parallel to substantially increase the tracking speed. This framework simultaneously predicts a target detection and produces a feature embedding for each location, by sharing a pyramid of feature maps. We propose a deformable local attention module which utilizes the correlations between features at different locations within a target to obtain more discriminative features. We further propose a task-aware prediction module which utilizes deformable convolutions to select the most suitable locations for the different tasks. At the selected locations, classification of samples into foreground or background, appearance feature embedding, and target box regression are carried out. Two effective training strategies, regression range overlapping and sample reweighting, are proposed to reduce missed detections in dense scenes. Ambiguous samples whose identities are difficult to determine are effectively dealt with to obtain more accurate feature embedding of target appearance. An appearance-enhanced non-maximum suppression is proposed to reduce over-suppression of true targets in crowded scenes. Based on the one-stage anchor-free network with the deformable local attention module and the task-aware prediction module, we implement a new online multiple target tracker. Experimental results show that our tracker achieves a very fast speed while maintaining a high tracking accuracy 
650 4 |a Journal Article 
700 1 |a Wang, Shaoru  |e verfasserin  |4 aut 
700 1 |a Zhou, Zongwei  |e verfasserin  |4 aut 
700 1 |a Gao, Jin  |e verfasserin  |4 aut 
700 1 |a Li, Yangxi  |e verfasserin  |4 aut 
700 1 |a Maybank, Stephen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 10. Dez., Seite 11446-11463  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:10  |g month:12  |g pages:11446-11463 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3457886  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 10  |c 12  |h 11446-11463