Causal Priors and Their Influence on Judgements of Causality in Visualized Data

"Correlation does not imply causation' is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal conclusions when only correlations between variables are shown. In this paper, we investigate factors that contribute to causal relationships...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 10. Sept.
1. Verfasser: Wang, Arran Zeyu (VerfasserIn)
Weitere Verfasser: Borland, David, Peck, Tabitha C, Wang, Wenyuan, Gotz, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM377422010
003 DE-627
005 20240911232926.0
007 cr uuu---uuuuu
008 240911s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3456381  |2 doi 
028 5 2 |a pubmed24n1530.xml 
035 |a (DE-627)NLM377422010 
035 |a (NLM)39255145 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Arran Zeyu  |e verfasserin  |4 aut 
245 1 0 |a Causal Priors and Their Influence on Judgements of Causality in Visualized Data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a "Correlation does not imply causation' is a famous mantra in statistical and visual analysis. However, consumers of visualizations often draw causal conclusions when only correlations between variables are shown. In this paper, we investigate factors that contribute to causal relationships users perceive in visualizations. We collected a corpus of concept pairs from variables in widely used datasets and created visualizations that depict varying correlative associations using three typical statistical chart types. We conducted two MTurk studies on (1) preconceived notions on causal relations without charts, and (2) perceived causal relations with charts, for each concept pair. Our results indicate that people make assumptions about causal relationships between pairs of concepts even without seeing any visualized data. Moreover, our results suggest that these assumptions constitute causal priors that, in combination with visualized association, impact how data visualizations are interpreted. The results also suggest that causal priors may lead to over- or under-estimation in perceived causal relations in different circumstances, and that those priors can also impact users' confidence in their causal assessments. In addition, our results align with prior work, indicating that chart type may also affect causal inference. Using data from the studies, we develop a model to capture the interaction between causal priors and visualized associations as they combine to impact a user's perceived causal relations. In addition to reporting the study results and analyses, we provide an open dataset of causal priors for 56 specific concept pairs that can serve as a potential benchmark for future studies. We also suggest remaining challenges and heuristic-based guidelines to help designers improve visualization design choices to better support visual causal inference 
650 4 |a Journal Article 
700 1 |a Borland, David  |e verfasserin  |4 aut 
700 1 |a Peck, Tabitha C  |e verfasserin  |4 aut 
700 1 |a Wang, Wenyuan  |e verfasserin  |4 aut 
700 1 |a Gotz, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 10. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:10  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3456381  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 10  |c 09