Expressive 3D Facial Animation Generation Based on Local-to-Global Latent Diffusion

3D Facial animations, crucial to augmented and mixed reality digital media, have evolved from mere aesthetic elements to potent storytelling media. Despite considerable progress in facial animation of neutral emotions, existing methods still struggle to capture the authenticity of emotions. This pap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 11 vom: 11. Okt., Seite 7397-7407
1. Verfasser: Song, Wenfeng (VerfasserIn)
Weitere Verfasser: Wang, Xuan, Jiang, Yiming, Li, Shuai, Hao, Aimin, Hou, Xia, Qin, Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377421723
003 DE-627
005 20241011232351.0
007 cr uuu---uuuuu
008 240911s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3456213  |2 doi 
028 5 2 |a pubmed24n1564.xml 
035 |a (DE-627)NLM377421723 
035 |a (NLM)39255115 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Wenfeng  |e verfasserin  |4 aut 
245 1 0 |a Expressive 3D Facial Animation Generation Based on Local-to-Global Latent Diffusion 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 3D Facial animations, crucial to augmented and mixed reality digital media, have evolved from mere aesthetic elements to potent storytelling media. Despite considerable progress in facial animation of neutral emotions, existing methods still struggle to capture the authenticity of emotions. This paper introduces a novel approach to capture fine facial expressions and generate facial animations using audio synchronization. Our method consists of two key components: First, the Local-to-global Latent Diffusion Model (LG-LDM) tailored for authentic facial expressions, which can integrate audio, time step, facial expressions, and other conditions towards possible encoding of emotionally rich yet latent features in response to possibly noisy raw audio signals. The core of LG-LDM is our carefully designed Facial Denoiser Model (FDM) for aligning the local-to-global animation feature with audio. Second, we redesign an Emotion-centric Vector Quantized-Variational AutoEncoder framework (EVQ-VAE) to finely decode the subtle differences under different emotions and reconstruct the final 3D facial geometry. Our work significantly contributes to the key challenges of emotionally realistic 3D facial animation for audio synchronization and enhances the immersive experience and emotional depth in augmented and mixed reality applications. We provide a reproducibility kit including our code, dataset, and detailed instructions for running the experiments. This kit is available at https://github.com/wangxuanx/Face-Diffusion-Model 
650 4 |a Journal Article 
700 1 |a Wang, Xuan  |e verfasserin  |4 aut 
700 1 |a Jiang, Yiming  |e verfasserin  |4 aut 
700 1 |a Li, Shuai  |e verfasserin  |4 aut 
700 1 |a Hao, Aimin  |e verfasserin  |4 aut 
700 1 |a Hou, Xia  |e verfasserin  |4 aut 
700 1 |a Qin, Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 11 vom: 11. Okt., Seite 7397-7407  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:11  |g day:11  |g month:10  |g pages:7397-7407 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3456213  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 11  |b 11  |c 10  |h 7397-7407