Uncertainty Visualization of Critical Points of 2D Scalar Fields for Parametric and Nonparametric Probabilistic Models

This paper presents a novel end-to-end framework for closed-form computation and visualization of critical point uncertainty in 2D uncertain scalar fields. Critical points are fundamental topological descriptors used in the visualization and analysis of scalar fields. The uncertainty inherent in dat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 10. Sept.
1. Verfasser: Athawale, Tushar M (VerfasserIn)
Weitere Verfasser: Wang, Zhe, Pugmire, David, Moreland, Kenneth, Gong, Qian, Klasky, Scott, Johnson, Chris R, Rosen, Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377421596
003 DE-627
005 20240913232912.0
007 cr uuu---uuuuu
008 240911s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3456393  |2 doi 
028 5 2 |a pubmed24n1532.xml 
035 |a (DE-627)NLM377421596 
035 |a (NLM)39255107 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Athawale, Tushar M  |e verfasserin  |4 aut 
245 1 0 |a Uncertainty Visualization of Critical Points of 2D Scalar Fields for Parametric and Nonparametric Probabilistic Models 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a This paper presents a novel end-to-end framework for closed-form computation and visualization of critical point uncertainty in 2D uncertain scalar fields. Critical points are fundamental topological descriptors used in the visualization and analysis of scalar fields. The uncertainty inherent in data (e.g., observational and experimental data, approximations in simulations, and compression), however, creates uncertainty regarding critical point positions. Uncertainty in critical point positions, therefore, cannot be ignored, given their impact on downstream data analysis tasks. In this work, we study uncertainty in critical points as a function of uncertainty in data modeled with probability distributions. Although Monte Carlo (MC) sampling techniques have been used in prior studies to quantify critical point uncertainty, they are often expensive and are infrequently used in production-quality visualization software. We, therefore, propose a new end-to-end framework to address these challenges that comprises a threefold contribution. First, we derive the critical point uncertainty in closed form, which is more accurate and efficient than the conventional MC sampling methods. Specifically, we provide the closed-form and semianalytical (a mix of closed-form and MC methods) solutions for parametric (e.g., uniform, Epanechnikov) and nonparametric models (e.g., histograms) with finite support. Second, we accelerate critical point probability computations using a parallel implementation with the VTK-m library, which is platform portable. Finally, we demonstrate the integration of our implementation with the ParaView software system to demonstrate near-real-time results for real datasets 
650 4 |a Journal Article 
700 1 |a Wang, Zhe  |e verfasserin  |4 aut 
700 1 |a Pugmire, David  |e verfasserin  |4 aut 
700 1 |a Moreland, Kenneth  |e verfasserin  |4 aut 
700 1 |a Gong, Qian  |e verfasserin  |4 aut 
700 1 |a Klasky, Scott  |e verfasserin  |4 aut 
700 1 |a Johnson, Chris R  |e verfasserin  |4 aut 
700 1 |a Rosen, Paul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 10. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:10  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3456393  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 10  |c 09