|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM377413992 |
003 |
DE-627 |
005 |
20241107232252.0 |
007 |
cr uuu---uuuuu |
008 |
240910s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202409904
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1593.xml
|
035 |
|
|
|a (DE-627)NLM377413992
|
035 |
|
|
|a (NLM)39254348
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jiao, Shuqiang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a d-Orbital Induced Electronic Structure Reconfiguration toward Manipulating Electron Transfer Pathways of Metallo-Porphyrin for Enhanced AlCl2 + Storage
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a The positive electrodes of non-aqueous aluminum ion batteries (AIBs) frequently encounter significant issues, for instance, low capacity in graphite (mechanism: anion de/intercalation and large electrode deformation induced) and poor stability in inorganic positive electrodes (mechanism: multi-electron redox reaction and dissolution of active materials induced). Here, metallo-porphyrin compounds (employed Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ as the ion centers) are introduced to effectively enhance both the cycling stability and reversible capacity due to the formation of stable conjugated metal-organic coordination and presence of axially coordinated active sites, respectively. With the regulation of electronic energy levels, the d-orbitals in the redox reactions and electron transfer pathways can be rearranged. The 5,10,15,20-tetraphenyl-21H,23H-porphine nickle(II) (NiTPP) presents the highest specific capacity (177.1 mAh g-1), with an increment of 32.1% and 77.1% in comparison with the capacities of H2TPP and graphite, respectively, which offers a new route for developing high-capacity positive electrodes for stable AIBs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a aluminum ion battery
|
650 |
|
4 |
|a high specific capacity
|
650 |
|
4 |
|a metallo‐porphyrin compounds
|
650 |
|
4 |
|a organic positive electrode
|
700 |
1 |
|
|a Han, Xue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bu, Xudong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Zheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Shijie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Mingyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yunpeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Wei-Li
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 45 vom: 21. Nov., Seite e2409904
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:45
|g day:21
|g month:11
|g pages:e2409904
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202409904
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 45
|b 21
|c 11
|h e2409904
|