Comparative network analysis reveals the regulatory mechanism of 1-methylcyclopropene on sugar and acid metabolisms in yellow peach stored at non-chilling temperatures

Copyright © 2024 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 216(2024) vom: 01. Nov., Seite 109100
1. Verfasser: Zhou, Huijuan (VerfasserIn)
Weitere Verfasser: Wang, Lufan, Su, Mingshen, Zhang, Xianan, Du, Jihong, Li, Xiongwei, Zhang, Minghao, Hu, Yang, Zheng, Xiaolin, Ye, Zhengwen, Huan, Chen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Comparative Study 1-Methylcyclopropene treatment Non-chilling temperature storage Sugar and acid metabolisms Transcriptome analysis Yellow peach Cyclopropanes 1-methylcyclopropene J6UJO23JGU mehr... Plant Proteins Ethylenes ethylene 91GW059KN7 Sugars Malates
Beschreibung
Zusammenfassung:Copyright © 2024 Elsevier Masson SAS. All rights reserved.
Soluble carbohydrates and organic acids are critical determinants of fruit flavor and consumer preference, both of which are susceptible to postharvest treatments and storage conditions. While the individual effectiveness of 1-methylcyclopropene (1-MCP) and non-chilling temperature storage in delaying fruit ripening and influencing flavor development has been established, their combined effects on peach storage traits remain unexplored. This study investigated the impact of 1-MCP combined with non-chilling temperature storage on the quality and flavor attributes of yellow peach. Our results revealed that 1-MCP treatment reduced ethylene production during storage and delayed ripening and softening by down-regulating ethylene biosynthesis and signaling genes. Transcriptomic analysis indicated that 1-MCP maintained higher levels of soluble carbohydrates by up-regulating sucrose phosphate synthase (PpSPS1/2) and sorbitol dehydrogenase (PpSDH1) while down-regulating hexokinase (PpHXK1). Concurrently, 1-MCP preserved citric and malic acid levels by suppressing aconitate hydratase (PpACO1) and inducing malate dehydrogenase (PpMDH1), thereby delaying flavor degradation. Co-expression network analysis implicated ethylene response factors (PpERFs) as major regulators of sugar and acid metabolisms genes, with PpERF19 potentially functioning as a key transcriptional controller. Overall, this study verified the efficacy of combined 1-MCP and non-chilling storage for yellow peach preservation, identified key 1-MCP-modulated genes involved in sugar and acid metabolisms, and provided insights into regulating peach flavor development via postharvest approaches
Beschreibung:Date Completed 07.11.2024
Date Revised 07.11.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.109100