Modeling of Multiple Spatial-Temporal Relations for Robust Visual Object Tracking

Recently, one-stream trackers have achieved parallel feature extraction and relation modeling through the exploitation of Transformer-based architectures. This design greatly improves the performance of trackers. However, as one-stream trackers often overlook crucial tracking cues beyond the templat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 5073-5085
1. Verfasser: Wang, Shilei (VerfasserIn)
Weitere Verfasser: Wang, Zhenhua, Sun, Qianqian, Cheng, Gong, Ning, Jifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Recently, one-stream trackers have achieved parallel feature extraction and relation modeling through the exploitation of Transformer-based architectures. This design greatly improves the performance of trackers. However, as one-stream trackers often overlook crucial tracking cues beyond the template, they prone to give unsatisfactory results against complex tracking scenarios. To tackle these challenges, we propose a multi-cue single-stream tracker, dubbed MCTrack here, which seamlessly integrates template information, historical trajectory, historical frame, and the search region for synchronized feature extraction and relation modeling. To achieve this, we employ two types of encoders to convert the template, historical frames, search region, and historical trajectory into tokens, which are then collectively fed into a Transformer architecture. To distill temporal and spatial cues, we introduce a novel adaptive update mechanism, which incorporates a thresholding component and a local multi-peak component to filter out less accurate and overly disturbed tracking cues. Empirically, MCTrack achieves leading performance on mainstream benchmark datasets, surpassing the most advanced SeqTrack by 2.0% in terms of the AO metric on GOT-10k. The code is available at https://github.com/wsumel/MCTrack
Beschreibung:Date Revised 18.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3453028