High-Entropy Metal-Organic Frameworks (HEMOFs) : A New Frontier in Materials Design for CO2 Utilization

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 45 vom: 15. Nov., Seite e2407435
1. Verfasser: Sikma, R Eric (VerfasserIn)
Weitere Verfasser: Vogel, Dayton J, Reyes, Raphael A, Meyerson, Melissa L, Kotula, Paul G, Gallis, Dorina F Sava
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CO2 conversion density functional theory high‐entropy materials metal‐organic frameworks
LEADER 01000caa a22002652 4500
001 NLM377332216
003 DE-627
005 20241107232248.0
007 cr uuu---uuuuu
008 240909s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202407435  |2 doi 
028 5 2 |a pubmed24n1593.xml 
035 |a (DE-627)NLM377332216 
035 |a (NLM)39246129 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sikma, R Eric  |e verfasserin  |4 aut 
245 1 0 |a High-Entropy Metal-Organic Frameworks (HEMOFs)  |b A New Frontier in Materials Design for CO2 Utilization 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a High-entropy materials (HEMs) emerged as promising candidates for a diverse array of chemical transformations, including CO2 utilization. However, traditional HEMs catalysts are nonporous, limiting their activity to surface sites. Designing HEMs with intrinsic porosity can open the door toward enhanced reactivity while maintaining the many benefits of high configurational entropy. Here, a synergistic experimental, analytical, and theoretical approach to design the first high-entropy metal-organic frameworks (HEMOFs) derived from polynuclear metal clusters is implemented, a novel class of porous HEMs that is highly active for CO2 fixation under mild conditions and short reaction times, outperforming existing heterogeneous catalysts. HEMOFs with up to 15 distinct metals are synthesized (the highest number of metals ever incorporated into a single MOF) and, for the first time, homogenous metal mixing within individual clusters is directly observed via high-resolution scanning transmission electron microscopy. Importantly, density functional theory studies provide unprecedented insight into the electronic structures of HEMOFs, demonstrating that the density of states in heterometallic clusters is highly sensitive to metal composition. This work dramatically advances HEMOF materials design, paving the way for further exploration of HEMs and offers new avenues for the development of multifunctional materials with tailored properties for a wide range of applications 
650 4 |a Journal Article 
650 4 |a CO2 conversion 
650 4 |a density functional theory 
650 4 |a high‐entropy materials 
650 4 |a metal‐organic frameworks 
700 1 |a Vogel, Dayton J  |e verfasserin  |4 aut 
700 1 |a Reyes, Raphael A  |e verfasserin  |4 aut 
700 1 |a Meyerson, Melissa L  |e verfasserin  |4 aut 
700 1 |a Kotula, Paul G  |e verfasserin  |4 aut 
700 1 |a Gallis, Dorina F Sava  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 45 vom: 15. Nov., Seite e2407435  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:45  |g day:15  |g month:11  |g pages:e2407435 
856 4 0 |u http://dx.doi.org/10.1002/adma.202407435  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 45  |b 15  |c 11  |h e2407435