Variational Label Enhancement for Instance-Dependent Partial Label Learning

Partial label learning (PLL) is a form of weakly supervised learning, where each training example is linked to a set of candidate labels, among which only one label is correct. Most existing PLL approaches assume that the incorrect labels in each training example are randomly picked as the candidate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 06. Sept.
1. Verfasser: Xu, Ning (VerfasserIn)
Weitere Verfasser: Qiao, Congyu, Zhao, Yuchen, Geng, Xin, Zhang, Min-Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM377278335
003 DE-627
005 20250306151304.0
007 cr uuu---uuuuu
008 240907s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3455260  |2 doi 
028 5 2 |a pubmed25n1256.xml 
035 |a (DE-627)NLM377278335 
035 |a (NLM)39240733 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Ning  |e verfasserin  |4 aut 
245 1 0 |a Variational Label Enhancement for Instance-Dependent Partial Label Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Partial label learning (PLL) is a form of weakly supervised learning, where each training example is linked to a set of candidate labels, among which only one label is correct. Most existing PLL approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels. However, in practice, this assumption may not hold true, as the candidate labels are often instance-dependent. In this paper, we address the instance-dependent PLL problem and assume that each example is associated with a latent label distribution where the incorrect label with a high degree is more likely to be annotated as a candidate label. Motivated by this consideration, we propose two methods VALEN and MILEN, which train the predictive model via utilizing the latent label distributions recovered by the label enhancement process. Specifically, VALEN recovers the latent label distributions via inferring the variational posterior density parameterized by an inference model with the deduced evidence lower bound. MILEN recovers the latent label distribution by adopting the variational approximation to bound the mutual information among the latent label distribution, observed labels and augmented instances. Experiments on benchmark and real-world datasets validate the effectiveness of the proposed methods 
650 4 |a Journal Article 
700 1 |a Qiao, Congyu  |e verfasserin  |4 aut 
700 1 |a Zhao, Yuchen  |e verfasserin  |4 aut 
700 1 |a Geng, Xin  |e verfasserin  |4 aut 
700 1 |a Zhang, Min-Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 06. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:06  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3455260  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 06  |c 09